പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
A, B എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

A+B+1=0,A-2B=3
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
A+B+1=0
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള A മാറ്റിനിർത്തിക്കൊണ്ട് A എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
A+B=-1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
A=-B-1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും B കുറയ്ക്കുക.
-B-1-2B=3
A-2B=3 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ A എന്നതിനായി -B-1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-3B-1=3
-B, -2B എന്നതിൽ ചേർക്കുക.
-3B=4
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 1 ചേർക്കുക.
B=-\frac{4}{3}
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
A=-\left(-\frac{4}{3}\right)-1
A=-B-1 എന്നതിലെ B എന്നതിനായി -\frac{4}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് A എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
A=\frac{4}{3}-1
-1, -\frac{4}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
A=\frac{1}{3}
-1, \frac{4}{3} എന്നതിൽ ചേർക്കുക.
A=\frac{1}{3},B=-\frac{4}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
A+B+1=0,A-2B=3
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-1\right)+\frac{1}{3}\times 3\\\frac{1}{3}\left(-1\right)-\frac{1}{3}\times 3\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\-\frac{4}{3}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
A=\frac{1}{3},B=-\frac{4}{3}
A, B എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
A+B+1=0,A-2B=3
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
A-A+B+2B+1=-3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് A+B+1=0 എന്നതിൽ നിന്ന് A-2B=3 കുറയ്ക്കുക.
B+2B+1=-3
A, -A എന്നതിൽ ചേർക്കുക. A, -A എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
3B+1=-3
B, 2B എന്നതിൽ ചേർക്കുക.
3B=-4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
B=-\frac{4}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
A-2\left(-\frac{4}{3}\right)=3
A-2B=3 എന്നതിലെ B എന്നതിനായി -\frac{4}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് A എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
A+\frac{8}{3}=3
-2, -\frac{4}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
A=\frac{1}{3}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{8}{3} കുറയ്ക്കുക.
A=\frac{1}{3},B=-\frac{4}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.