പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

9x+13y=9,2x+y=11
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
9x+13y=9
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
9x=-13y+9
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 13y കുറയ്ക്കുക.
x=\frac{1}{9}\left(-13y+9\right)
ഇരുവശങ്ങളെയും 9 കൊണ്ട് ഹരിക്കുക.
x=-\frac{13}{9}y+1
\frac{1}{9}, -13y+9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2\left(-\frac{13}{9}y+1\right)+y=11
2x+y=11 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{13y}{9}+1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{26}{9}y+2+y=11
2, -\frac{13y}{9}+1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{17}{9}y+2=11
-\frac{26y}{9}, y എന്നതിൽ ചേർക്കുക.
-\frac{17}{9}y=9
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
y=-\frac{81}{17}
-\frac{17}{9} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{13}{9}\left(-\frac{81}{17}\right)+1
x=-\frac{13}{9}y+1 എന്നതിലെ y എന്നതിനായി -\frac{81}{17} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{117}{17}+1
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{13}{9}, -\frac{81}{17} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{134}{17}
1, \frac{117}{17} എന്നതിൽ ചേർക്കുക.
x=\frac{134}{17},y=-\frac{81}{17}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
9x+13y=9,2x+y=11
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}9&13\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\11\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}9&13\\2&1\end{matrix}\right))\left(\begin{matrix}9&13\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&13\\2&1\end{matrix}\right))\left(\begin{matrix}9\\11\end{matrix}\right)
\left(\begin{matrix}9&13\\2&1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&13\\2&1\end{matrix}\right))\left(\begin{matrix}9\\11\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&13\\2&1\end{matrix}\right))\left(\begin{matrix}9\\11\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9-13\times 2}&-\frac{13}{9-13\times 2}\\-\frac{2}{9-13\times 2}&\frac{9}{9-13\times 2}\end{matrix}\right)\left(\begin{matrix}9\\11\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{17}&\frac{13}{17}\\\frac{2}{17}&-\frac{9}{17}\end{matrix}\right)\left(\begin{matrix}9\\11\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{17}\times 9+\frac{13}{17}\times 11\\\frac{2}{17}\times 9-\frac{9}{17}\times 11\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{134}{17}\\-\frac{81}{17}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{134}{17},y=-\frac{81}{17}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
9x+13y=9,2x+y=11
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
2\times 9x+2\times 13y=2\times 9,9\times 2x+9y=9\times 11
9x, 2x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 9 കൊണ്ടും ഗുണിക്കുക.
18x+26y=18,18x+9y=99
ലഘൂകരിക്കുക.
18x-18x+26y-9y=18-99
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 18x+26y=18 എന്നതിൽ നിന്ന് 18x+9y=99 കുറയ്ക്കുക.
26y-9y=18-99
18x, -18x എന്നതിൽ ചേർക്കുക. 18x, -18x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
17y=18-99
26y, -9y എന്നതിൽ ചേർക്കുക.
17y=-81
18, -99 എന്നതിൽ ചേർക്കുക.
y=-\frac{81}{17}
ഇരുവശങ്ങളെയും 17 കൊണ്ട് ഹരിക്കുക.
2x-\frac{81}{17}=11
2x+y=11 എന്നതിലെ y എന്നതിനായി -\frac{81}{17} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
2x=\frac{268}{17}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{81}{17} ചേർക്കുക.
x=\frac{134}{17}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=\frac{134}{17},y=-\frac{81}{17}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.