v, w എന്നതിനായി സോൾവ് ചെയ്യുക
v=\frac{2}{3}\approx 0.666666667
w=\frac{1}{2}=0.5
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
9v+2w=7,3v-8w=-2
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
9v+2w=7
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള v മാറ്റിനിർത്തിക്കൊണ്ട് v എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
9v=-2w+7
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 2w കുറയ്ക്കുക.
v=\frac{1}{9}\left(-2w+7\right)
ഇരുവശങ്ങളെയും 9 കൊണ്ട് ഹരിക്കുക.
v=-\frac{2}{9}w+\frac{7}{9}
\frac{1}{9}, -2w+7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3\left(-\frac{2}{9}w+\frac{7}{9}\right)-8w=-2
3v-8w=-2 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ v എന്നതിനായി \frac{-2w+7}{9} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{2}{3}w+\frac{7}{3}-8w=-2
3, \frac{-2w+7}{9} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{26}{3}w+\frac{7}{3}=-2
-\frac{2w}{3}, -8w എന്നതിൽ ചേർക്കുക.
-\frac{26}{3}w=-\frac{13}{3}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{7}{3} കുറയ്ക്കുക.
w=\frac{1}{2}
-\frac{26}{3} കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
v=-\frac{2}{9}\times \frac{1}{2}+\frac{7}{9}
v=-\frac{2}{9}w+\frac{7}{9} എന്നതിലെ w എന്നതിനായി \frac{1}{2} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് v എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
v=\frac{-1+7}{9}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{2}{9}, \frac{1}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
v=\frac{2}{3}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{7}{9} എന്നത് -\frac{1}{9} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
v=\frac{2}{3},w=\frac{1}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
9v+2w=7,3v-8w=-2
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}9&2\\3&-8\end{matrix}\right)\left(\begin{matrix}v\\w\end{matrix}\right)=\left(\begin{matrix}7\\-2\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}9&2\\3&-8\end{matrix}\right))\left(\begin{matrix}9&2\\3&-8\end{matrix}\right)\left(\begin{matrix}v\\w\end{matrix}\right)=inverse(\left(\begin{matrix}9&2\\3&-8\end{matrix}\right))\left(\begin{matrix}7\\-2\end{matrix}\right)
\left(\begin{matrix}9&2\\3&-8\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}v\\w\end{matrix}\right)=inverse(\left(\begin{matrix}9&2\\3&-8\end{matrix}\right))\left(\begin{matrix}7\\-2\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}v\\w\end{matrix}\right)=inverse(\left(\begin{matrix}9&2\\3&-8\end{matrix}\right))\left(\begin{matrix}7\\-2\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}v\\w\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{9\left(-8\right)-2\times 3}&-\frac{2}{9\left(-8\right)-2\times 3}\\-\frac{3}{9\left(-8\right)-2\times 3}&\frac{9}{9\left(-8\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}7\\-2\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}v\\w\end{matrix}\right)=\left(\begin{matrix}\frac{4}{39}&\frac{1}{39}\\\frac{1}{26}&-\frac{3}{26}\end{matrix}\right)\left(\begin{matrix}7\\-2\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}v\\w\end{matrix}\right)=\left(\begin{matrix}\frac{4}{39}\times 7+\frac{1}{39}\left(-2\right)\\\frac{1}{26}\times 7-\frac{3}{26}\left(-2\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}v\\w\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\\\frac{1}{2}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
v=\frac{2}{3},w=\frac{1}{2}
v, w എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
9v+2w=7,3v-8w=-2
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
3\times 9v+3\times 2w=3\times 7,9\times 3v+9\left(-8\right)w=9\left(-2\right)
9v, 3v എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 9 കൊണ്ടും ഗുണിക്കുക.
27v+6w=21,27v-72w=-18
ലഘൂകരിക്കുക.
27v-27v+6w+72w=21+18
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 27v+6w=21 എന്നതിൽ നിന്ന് 27v-72w=-18 കുറയ്ക്കുക.
6w+72w=21+18
27v, -27v എന്നതിൽ ചേർക്കുക. 27v, -27v എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
78w=21+18
6w, 72w എന്നതിൽ ചേർക്കുക.
78w=39
21, 18 എന്നതിൽ ചേർക്കുക.
w=\frac{1}{2}
ഇരുവശങ്ങളെയും 78 കൊണ്ട് ഹരിക്കുക.
3v-8\times \frac{1}{2}=-2
3v-8w=-2 എന്നതിലെ w എന്നതിനായി \frac{1}{2} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് v എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
3v-4=-2
-8, \frac{1}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3v=2
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 4 ചേർക്കുക.
v=\frac{2}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
v=\frac{2}{3},w=\frac{1}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}