പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

8x+7y=1,5x+6y=1
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
8x+7y=1
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
8x=-7y+1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 7y കുറയ്ക്കുക.
x=\frac{1}{8}\left(-7y+1\right)
ഇരുവശങ്ങളെയും 8 കൊണ്ട് ഹരിക്കുക.
x=-\frac{7}{8}y+\frac{1}{8}
\frac{1}{8}, -7y+1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
5\left(-\frac{7}{8}y+\frac{1}{8}\right)+6y=1
5x+6y=1 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{-7y+1}{8} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{35}{8}y+\frac{5}{8}+6y=1
5, \frac{-7y+1}{8} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{13}{8}y+\frac{5}{8}=1
-\frac{35y}{8}, 6y എന്നതിൽ ചേർക്കുക.
\frac{13}{8}y=\frac{3}{8}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5}{8} കുറയ്ക്കുക.
y=\frac{3}{13}
\frac{13}{8} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{7}{8}\times \frac{3}{13}+\frac{1}{8}
x=-\frac{7}{8}y+\frac{1}{8} എന്നതിലെ y എന്നതിനായി \frac{3}{13} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-\frac{21}{104}+\frac{1}{8}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{7}{8}, \frac{3}{13} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-\frac{1}{13}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{8} എന്നത് -\frac{21}{104} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-\frac{1}{13},y=\frac{3}{13}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
8x+7y=1,5x+6y=1
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}8&7\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}8&7\\5&6\end{matrix}\right))\left(\begin{matrix}8&7\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&7\\5&6\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
\left(\begin{matrix}8&7\\5&6\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&7\\5&6\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&7\\5&6\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{8\times 6-7\times 5}&-\frac{7}{8\times 6-7\times 5}\\-\frac{5}{8\times 6-7\times 5}&\frac{8}{8\times 6-7\times 5}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{13}&-\frac{7}{13}\\-\frac{5}{13}&\frac{8}{13}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6-7}{13}\\\frac{-5+8}{13}\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\\\frac{3}{13}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-\frac{1}{13},y=\frac{3}{13}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
8x+7y=1,5x+6y=1
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
5\times 8x+5\times 7y=5,8\times 5x+8\times 6y=8
8x, 5x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 5 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 8 കൊണ്ടും ഗുണിക്കുക.
40x+35y=5,40x+48y=8
ലഘൂകരിക്കുക.
40x-40x+35y-48y=5-8
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 40x+35y=5 എന്നതിൽ നിന്ന് 40x+48y=8 കുറയ്ക്കുക.
35y-48y=5-8
40x, -40x എന്നതിൽ ചേർക്കുക. 40x, -40x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-13y=5-8
35y, -48y എന്നതിൽ ചേർക്കുക.
-13y=-3
5, -8 എന്നതിൽ ചേർക്കുക.
y=\frac{3}{13}
ഇരുവശങ്ങളെയും -13 കൊണ്ട് ഹരിക്കുക.
5x+6\times \frac{3}{13}=1
5x+6y=1 എന്നതിലെ y എന്നതിനായി \frac{3}{13} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
5x+\frac{18}{13}=1
6, \frac{3}{13} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
5x=-\frac{5}{13}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{18}{13} കുറയ്ക്കുക.
x=-\frac{1}{13}
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{13},y=\frac{3}{13}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.