പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

8x+3y=103.1,12x+8y=139.4
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
8x+3y=103.1
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
8x=-3y+103.1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3y കുറയ്ക്കുക.
x=\frac{1}{8}\left(-3y+103.1\right)
ഇരുവശങ്ങളെയും 8 കൊണ്ട് ഹരിക്കുക.
x=-\frac{3}{8}y+\frac{1031}{80}
\frac{1}{8}, -3y+103.1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
12\left(-\frac{3}{8}y+\frac{1031}{80}\right)+8y=139.4
12x+8y=139.4 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{3y}{8}+\frac{1031}{80} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{9}{2}y+\frac{3093}{20}+8y=139.4
12, -\frac{3y}{8}+\frac{1031}{80} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{7}{2}y+\frac{3093}{20}=139.4
-\frac{9y}{2}, 8y എന്നതിൽ ചേർക്കുക.
\frac{7}{2}y=-\frac{61}{4}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{3093}{20} കുറയ്ക്കുക.
y=-\frac{61}{14}
\frac{7}{2} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{3}{8}\left(-\frac{61}{14}\right)+\frac{1031}{80}
x=-\frac{3}{8}y+\frac{1031}{80} എന്നതിലെ y എന്നതിനായി -\frac{61}{14} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{183}{112}+\frac{1031}{80}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{3}{8}, -\frac{61}{14} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{2033}{140}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1031}{80} എന്നത് \frac{183}{112} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{2033}{140},y=-\frac{61}{14}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
8x+3y=103.1,12x+8y=139.4
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}8&3\\12&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}103.1\\139.4\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}8&3\\12&8\end{matrix}\right))\left(\begin{matrix}8&3\\12&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\12&8\end{matrix}\right))\left(\begin{matrix}103.1\\139.4\end{matrix}\right)
\left(\begin{matrix}8&3\\12&8\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\12&8\end{matrix}\right))\left(\begin{matrix}103.1\\139.4\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\12&8\end{matrix}\right))\left(\begin{matrix}103.1\\139.4\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8\times 8-3\times 12}&-\frac{3}{8\times 8-3\times 12}\\-\frac{12}{8\times 8-3\times 12}&\frac{8}{8\times 8-3\times 12}\end{matrix}\right)\left(\begin{matrix}103.1\\139.4\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&-\frac{3}{28}\\-\frac{3}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}103.1\\139.4\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 103.1-\frac{3}{28}\times 139.4\\-\frac{3}{7}\times 103.1+\frac{2}{7}\times 139.4\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2033}{140}\\-\frac{61}{14}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{2033}{140},y=-\frac{61}{14}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
8x+3y=103.1,12x+8y=139.4
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
12\times 8x+12\times 3y=12\times 103.1,8\times 12x+8\times 8y=8\times 139.4
8x, 12x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 12 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 8 കൊണ്ടും ഗുണിക്കുക.
96x+36y=1237.2,96x+64y=1115.2
ലഘൂകരിക്കുക.
96x-96x+36y-64y=\frac{6186-5576}{5}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 96x+36y=1237.2 എന്നതിൽ നിന്ന് 96x+64y=1115.2 കുറയ്ക്കുക.
36y-64y=\frac{6186-5576}{5}
96x, -96x എന്നതിൽ ചേർക്കുക. 96x, -96x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-28y=\frac{6186-5576}{5}
36y, -64y എന്നതിൽ ചേർക്കുക.
-28y=122
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ 1237.2 എന്നത് -1115.2 എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
y=-\frac{61}{14}
ഇരുവശങ്ങളെയും -28 കൊണ്ട് ഹരിക്കുക.
12x+8\left(-\frac{61}{14}\right)=139.4
12x+8y=139.4 എന്നതിലെ y എന്നതിനായി -\frac{61}{14} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
12x-\frac{244}{7}=139.4
8, -\frac{61}{14} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
12x=\frac{6099}{35}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{244}{7} ചേർക്കുക.
x=\frac{2033}{140}
ഇരുവശങ്ങളെയും 12 കൊണ്ട് ഹരിക്കുക.
x=\frac{2033}{140},y=-\frac{61}{14}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.