പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

7x+3y=4,2x+4y=8
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
7x+3y=4
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
7x=-3y+4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3y കുറയ്ക്കുക.
x=\frac{1}{7}\left(-3y+4\right)
ഇരുവശങ്ങളെയും 7 കൊണ്ട് ഹരിക്കുക.
x=-\frac{3}{7}y+\frac{4}{7}
\frac{1}{7}, -3y+4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2\left(-\frac{3}{7}y+\frac{4}{7}\right)+4y=8
2x+4y=8 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{-3y+4}{7} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{6}{7}y+\frac{8}{7}+4y=8
2, \frac{-3y+4}{7} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{22}{7}y+\frac{8}{7}=8
-\frac{6y}{7}, 4y എന്നതിൽ ചേർക്കുക.
\frac{22}{7}y=\frac{48}{7}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{8}{7} കുറയ്ക്കുക.
y=\frac{24}{11}
\frac{22}{7} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{3}{7}\times \frac{24}{11}+\frac{4}{7}
x=-\frac{3}{7}y+\frac{4}{7} എന്നതിലെ y എന്നതിനായി \frac{24}{11} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-\frac{72}{77}+\frac{4}{7}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{3}{7}, \frac{24}{11} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-\frac{4}{11}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{4}{7} എന്നത് -\frac{72}{77} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-\frac{4}{11},y=\frac{24}{11}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
7x+3y=4,2x+4y=8
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}7&3\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}7&3\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
\left(\begin{matrix}7&3\\2&4\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7\times 4-3\times 2}&-\frac{3}{7\times 4-3\times 2}\\-\frac{2}{7\times 4-3\times 2}&\frac{7}{7\times 4-3\times 2}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&-\frac{3}{22}\\-\frac{1}{11}&\frac{7}{22}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 4-\frac{3}{22}\times 8\\-\frac{1}{11}\times 4+\frac{7}{22}\times 8\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11}\\\frac{24}{11}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-\frac{4}{11},y=\frac{24}{11}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
7x+3y=4,2x+4y=8
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
2\times 7x+2\times 3y=2\times 4,7\times 2x+7\times 4y=7\times 8
7x, 2x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 7 കൊണ്ടും ഗുണിക്കുക.
14x+6y=8,14x+28y=56
ലഘൂകരിക്കുക.
14x-14x+6y-28y=8-56
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 14x+6y=8 എന്നതിൽ നിന്ന് 14x+28y=56 കുറയ്ക്കുക.
6y-28y=8-56
14x, -14x എന്നതിൽ ചേർക്കുക. 14x, -14x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-22y=8-56
6y, -28y എന്നതിൽ ചേർക്കുക.
-22y=-48
8, -56 എന്നതിൽ ചേർക്കുക.
y=\frac{24}{11}
ഇരുവശങ്ങളെയും -22 കൊണ്ട് ഹരിക്കുക.
2x+4\times \frac{24}{11}=8
2x+4y=8 എന്നതിലെ y എന്നതിനായി \frac{24}{11} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
2x+\frac{96}{11}=8
4, \frac{24}{11} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2x=-\frac{8}{11}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{96}{11} കുറയ്ക്കുക.
x=-\frac{4}{11}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=-\frac{4}{11},y=\frac{24}{11}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.