പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

62x+y=44,34x-y=36
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
62x+y=44
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
62x=-y+44
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
x=\frac{1}{62}\left(-y+44\right)
ഇരുവശങ്ങളെയും 62 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{62}y+\frac{22}{31}
\frac{1}{62}, -y+44 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
34\left(-\frac{1}{62}y+\frac{22}{31}\right)-y=36
34x-y=36 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{y}{62}+\frac{22}{31} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{17}{31}y+\frac{748}{31}-y=36
34, -\frac{y}{62}+\frac{22}{31} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{48}{31}y+\frac{748}{31}=36
-\frac{17y}{31}, -y എന്നതിൽ ചേർക്കുക.
-\frac{48}{31}y=\frac{368}{31}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{748}{31} കുറയ്ക്കുക.
y=-\frac{23}{3}
-\frac{48}{31} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{1}{62}\left(-\frac{23}{3}\right)+\frac{22}{31}
x=-\frac{1}{62}y+\frac{22}{31} എന്നതിലെ y എന്നതിനായി -\frac{23}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{23}{186}+\frac{22}{31}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{1}{62}, -\frac{23}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{5}{6}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{22}{31} എന്നത് \frac{23}{186} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{5}{6},y=-\frac{23}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
62x+y=44,34x-y=36
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}62&1\\34&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}44\\36\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}62&1\\34&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}44\\36\end{matrix}\right)
\left(\begin{matrix}62&1\\34&-1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}44\\36\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}44\\36\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{62\left(-1\right)-34}&-\frac{1}{62\left(-1\right)-34}\\-\frac{34}{62\left(-1\right)-34}&\frac{62}{62\left(-1\right)-34}\end{matrix}\right)\left(\begin{matrix}44\\36\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{96}&\frac{1}{96}\\\frac{17}{48}&-\frac{31}{48}\end{matrix}\right)\left(\begin{matrix}44\\36\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{96}\times 44+\frac{1}{96}\times 36\\\frac{17}{48}\times 44-\frac{31}{48}\times 36\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\\-\frac{23}{3}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{5}{6},y=-\frac{23}{3}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
62x+y=44,34x-y=36
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
34\times 62x+34y=34\times 44,62\times 34x+62\left(-1\right)y=62\times 36
62x, 34x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 34 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 62 കൊണ്ടും ഗുണിക്കുക.
2108x+34y=1496,2108x-62y=2232
ലഘൂകരിക്കുക.
2108x-2108x+34y+62y=1496-2232
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 2108x+34y=1496 എന്നതിൽ നിന്ന് 2108x-62y=2232 കുറയ്ക്കുക.
34y+62y=1496-2232
2108x, -2108x എന്നതിൽ ചേർക്കുക. 2108x, -2108x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
96y=1496-2232
34y, 62y എന്നതിൽ ചേർക്കുക.
96y=-736
1496, -2232 എന്നതിൽ ചേർക്കുക.
y=-\frac{23}{3}
ഇരുവശങ്ങളെയും 96 കൊണ്ട് ഹരിക്കുക.
34x-\left(-\frac{23}{3}\right)=36
34x-y=36 എന്നതിലെ y എന്നതിനായി -\frac{23}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
34x=\frac{85}{3}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{23}{3} കുറയ്ക്കുക.
x=\frac{5}{6}
ഇരുവശങ്ങളെയും 34 കൊണ്ട് ഹരിക്കുക.
x=\frac{5}{6},y=-\frac{23}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.