x, y എന്നതിനായി സോൾവ് ചെയ്യുക
x=3.15
y=2.35
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
6x+3y=25.95,4x+6y=26.7
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
6x+3y=25.95
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
6x=-3y+25.95
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 3y കുറയ്ക്കുക.
x=\frac{1}{6}\left(-3y+25.95\right)
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{2}y+\frac{173}{40}
\frac{1}{6}, -3y+25.95 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4\left(-\frac{1}{2}y+\frac{173}{40}\right)+6y=26.7
4x+6y=26.7 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{y}{2}+\frac{173}{40} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-2y+\frac{173}{10}+6y=26.7
4, -\frac{y}{2}+\frac{173}{40} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4y+\frac{173}{10}=26.7
-2y, 6y എന്നതിൽ ചേർക്കുക.
4y=\frac{47}{5}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{173}{10} കുറയ്ക്കുക.
y=\frac{47}{20}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{2}\times \frac{47}{20}+\frac{173}{40}
x=-\frac{1}{2}y+\frac{173}{40} എന്നതിലെ y എന്നതിനായി \frac{47}{20} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{-47+173}{40}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{1}{2}, \frac{47}{20} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{63}{20}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{173}{40} എന്നത് -\frac{47}{40} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{63}{20},y=\frac{47}{20}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
6x+3y=25.95,4x+6y=26.7
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}6&3\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}6&3\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
\left(\begin{matrix}6&3\\4&6\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6\times 6-3\times 4}&-\frac{3}{6\times 6-3\times 4}\\-\frac{4}{6\times 6-3\times 4}&\frac{6}{6\times 6-3\times 4}\end{matrix}\right)\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{8}\\-\frac{1}{6}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 25.95-\frac{1}{8}\times 26.7\\-\frac{1}{6}\times 25.95+\frac{1}{4}\times 26.7\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{63}{20}\\\frac{47}{20}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{63}{20},y=\frac{47}{20}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
6x+3y=25.95,4x+6y=26.7
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
4\times 6x+4\times 3y=4\times 25.95,6\times 4x+6\times 6y=6\times 26.7
6x, 4x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 4 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 6 കൊണ്ടും ഗുണിക്കുക.
24x+12y=103.8,24x+36y=160.2
ലഘൂകരിക്കുക.
24x-24x+12y-36y=\frac{519-801}{5}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 24x+12y=103.8 എന്നതിൽ നിന്ന് 24x+36y=160.2 കുറയ്ക്കുക.
12y-36y=\frac{519-801}{5}
24x, -24x എന്നതിൽ ചേർക്കുക. 24x, -24x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-24y=\frac{519-801}{5}
12y, -36y എന്നതിൽ ചേർക്കുക.
-24y=-56.4
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ 103.8 എന്നത് -160.2 എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
y=\frac{47}{20}
ഇരുവശങ്ങളെയും -24 കൊണ്ട് ഹരിക്കുക.
4x+6\times \frac{47}{20}=26.7
4x+6y=26.7 എന്നതിലെ y എന്നതിനായി \frac{47}{20} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
4x+\frac{141}{10}=26.7
6, \frac{47}{20} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4x=\frac{63}{5}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{141}{10} കുറയ്ക്കുക.
x=\frac{63}{20}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x=\frac{63}{20},y=\frac{47}{20}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}