പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y, x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

5y+4x=-13
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 4x ഇരു വശങ്ങളിലും ചേർക്കുക.
5y+4x=-13,6y+3x=13
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
5y+4x=-13
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള y മാറ്റിനിർത്തിക്കൊണ്ട് y എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
5y=-4x-13
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 4x കുറയ്ക്കുക.
y=\frac{1}{5}\left(-4x-13\right)
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
y=-\frac{4}{5}x-\frac{13}{5}
\frac{1}{5}, -4x-13 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6\left(-\frac{4}{5}x-\frac{13}{5}\right)+3x=13
6y+3x=13 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ y എന്നതിനായി \frac{-4x-13}{5} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{24}{5}x-\frac{78}{5}+3x=13
6, \frac{-4x-13}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{9}{5}x-\frac{78}{5}=13
-\frac{24x}{5}, 3x എന്നതിൽ ചേർക്കുക.
-\frac{9}{5}x=\frac{143}{5}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{78}{5} ചേർക്കുക.
x=-\frac{143}{9}
-\frac{9}{5} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
y=-\frac{4}{5}\left(-\frac{143}{9}\right)-\frac{13}{5}
y=-\frac{4}{5}x-\frac{13}{5} എന്നതിലെ x എന്നതിനായി -\frac{143}{9} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
y=\frac{572}{45}-\frac{13}{5}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{4}{5}, -\frac{143}{9} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
y=\frac{91}{9}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{13}{5} എന്നത് \frac{572}{45} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
y=\frac{91}{9},x=-\frac{143}{9}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
5y+4x=-13
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 4x ഇരു വശങ്ങളിലും ചേർക്കുക.
5y+4x=-13,6y+3x=13
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}5&4\\6&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-13\\13\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}5&4\\6&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-13\\13\end{matrix}\right)
\left(\begin{matrix}5&4\\6&3\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-13\\13\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-13\\13\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-4\times 6}&-\frac{4}{5\times 3-4\times 6}\\-\frac{6}{5\times 3-4\times 6}&\frac{5}{5\times 3-4\times 6}\end{matrix}\right)\left(\begin{matrix}-13\\13\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{9}\\\frac{2}{3}&-\frac{5}{9}\end{matrix}\right)\left(\begin{matrix}-13\\13\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-13\right)+\frac{4}{9}\times 13\\\frac{2}{3}\left(-13\right)-\frac{5}{9}\times 13\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{91}{9}\\-\frac{143}{9}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
y=\frac{91}{9},x=-\frac{143}{9}
y, x എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
5y+4x=-13
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 4x ഇരു വശങ്ങളിലും ചേർക്കുക.
5y+4x=-13,6y+3x=13
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
6\times 5y+6\times 4x=6\left(-13\right),5\times 6y+5\times 3x=5\times 13
5y, 6y എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 6 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 5 കൊണ്ടും ഗുണിക്കുക.
30y+24x=-78,30y+15x=65
ലഘൂകരിക്കുക.
30y-30y+24x-15x=-78-65
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 30y+24x=-78 എന്നതിൽ നിന്ന് 30y+15x=65 കുറയ്ക്കുക.
24x-15x=-78-65
30y, -30y എന്നതിൽ ചേർക്കുക. 30y, -30y എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
9x=-78-65
24x, -15x എന്നതിൽ ചേർക്കുക.
9x=-143
-78, -65 എന്നതിൽ ചേർക്കുക.
x=-\frac{143}{9}
ഇരുവശങ്ങളെയും 9 കൊണ്ട് ഹരിക്കുക.
6y+3\left(-\frac{143}{9}\right)=13
6y+3x=13 എന്നതിലെ x എന്നതിനായി -\frac{143}{9} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
6y-\frac{143}{3}=13
3, -\frac{143}{9} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6y=\frac{182}{3}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{143}{3} ചേർക്കുക.
y=\frac{91}{9}
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
y=\frac{91}{9},x=-\frac{143}{9}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.