പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

5x-7y=-27,2x+3y=24
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
5x-7y=-27
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
5x=7y-27
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 7y ചേർക്കുക.
x=\frac{1}{5}\left(7y-27\right)
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
x=\frac{7}{5}y-\frac{27}{5}
\frac{1}{5}, 7y-27 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2\left(\frac{7}{5}y-\frac{27}{5}\right)+3y=24
2x+3y=24 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{7y-27}{5} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{14}{5}y-\frac{54}{5}+3y=24
2, \frac{7y-27}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{29}{5}y-\frac{54}{5}=24
\frac{14y}{5}, 3y എന്നതിൽ ചേർക്കുക.
\frac{29}{5}y=\frac{174}{5}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{54}{5} ചേർക്കുക.
y=6
\frac{29}{5} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=\frac{7}{5}\times 6-\frac{27}{5}
x=\frac{7}{5}y-\frac{27}{5} എന്നതിലെ y എന്നതിനായി 6 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{42-27}{5}
\frac{7}{5}, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=3
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{27}{5} എന്നത് \frac{42}{5} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=3,y=6
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
5x-7y=-27,2x+3y=24
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}5&-7\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-27\\24\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}5&-7\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-27\\24\end{matrix}\right)
\left(\begin{matrix}5&-7\\2&3\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-27\\24\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-27\\24\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-7\times 2\right)}&-\frac{-7}{5\times 3-\left(-7\times 2\right)}\\-\frac{2}{5\times 3-\left(-7\times 2\right)}&\frac{5}{5\times 3-\left(-7\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-27\\24\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{29}&\frac{7}{29}\\-\frac{2}{29}&\frac{5}{29}\end{matrix}\right)\left(\begin{matrix}-27\\24\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{29}\left(-27\right)+\frac{7}{29}\times 24\\-\frac{2}{29}\left(-27\right)+\frac{5}{29}\times 24\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=3,y=6
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
5x-7y=-27,2x+3y=24
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
2\times 5x+2\left(-7\right)y=2\left(-27\right),5\times 2x+5\times 3y=5\times 24
5x, 2x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 5 കൊണ്ടും ഗുണിക്കുക.
10x-14y=-54,10x+15y=120
ലഘൂകരിക്കുക.
10x-10x-14y-15y=-54-120
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 10x-14y=-54 എന്നതിൽ നിന്ന് 10x+15y=120 കുറയ്ക്കുക.
-14y-15y=-54-120
10x, -10x എന്നതിൽ ചേർക്കുക. 10x, -10x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-29y=-54-120
-14y, -15y എന്നതിൽ ചേർക്കുക.
-29y=-174
-54, -120 എന്നതിൽ ചേർക്കുക.
y=6
ഇരുവശങ്ങളെയും -29 കൊണ്ട് ഹരിക്കുക.
2x+3\times 6=24
2x+3y=24 എന്നതിലെ y എന്നതിനായി 6 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
2x+18=24
3, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2x=6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 18 കുറയ്ക്കുക.
x=3
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=3,y=6
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.