b, c എന്നതിനായി സോൾവ് ചെയ്യുക
b = \frac{3}{2} = 1\frac{1}{2} = 1.5
c=\frac{1}{2}=0.5
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
5b+c=8,4b+4c=8
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
5b+c=8
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള b മാറ്റിനിർത്തിക്കൊണ്ട് b എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
5b=-c+8
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും c കുറയ്ക്കുക.
b=\frac{1}{5}\left(-c+8\right)
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
b=-\frac{1}{5}c+\frac{8}{5}
\frac{1}{5}, -c+8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4\left(-\frac{1}{5}c+\frac{8}{5}\right)+4c=8
4b+4c=8 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ b എന്നതിനായി \frac{-c+8}{5} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{4}{5}c+\frac{32}{5}+4c=8
4, \frac{-c+8}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{16}{5}c+\frac{32}{5}=8
-\frac{4c}{5}, 4c എന്നതിൽ ചേർക്കുക.
\frac{16}{5}c=\frac{8}{5}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{32}{5} കുറയ്ക്കുക.
c=\frac{1}{2}
\frac{16}{5} കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
b=-\frac{1}{5}\times \frac{1}{2}+\frac{8}{5}
b=-\frac{1}{5}c+\frac{8}{5} എന്നതിലെ c എന്നതിനായി \frac{1}{2} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് b എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
b=-\frac{1}{10}+\frac{8}{5}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{1}{5}, \frac{1}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
b=\frac{3}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{8}{5} എന്നത് -\frac{1}{10} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
b=\frac{3}{2},c=\frac{1}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
5b+c=8,4b+4c=8
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}5&1\\4&4\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}8\\8\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}5&1\\4&4\end{matrix}\right))\left(\begin{matrix}5&1\\4&4\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\4&4\end{matrix}\right))\left(\begin{matrix}8\\8\end{matrix}\right)
\left(\begin{matrix}5&1\\4&4\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\4&4\end{matrix}\right))\left(\begin{matrix}8\\8\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\4&4\end{matrix}\right))\left(\begin{matrix}8\\8\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-4}&-\frac{1}{5\times 4-4}\\-\frac{4}{5\times 4-4}&\frac{5}{5\times 4-4}\end{matrix}\right)\left(\begin{matrix}8\\8\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{16}\\-\frac{1}{4}&\frac{5}{16}\end{matrix}\right)\left(\begin{matrix}8\\8\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 8-\frac{1}{16}\times 8\\-\frac{1}{4}\times 8+\frac{5}{16}\times 8\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{1}{2}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
b=\frac{3}{2},c=\frac{1}{2}
b, c എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
5b+c=8,4b+4c=8
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
4\times 5b+4c=4\times 8,5\times 4b+5\times 4c=5\times 8
5b, 4b എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 4 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 5 കൊണ്ടും ഗുണിക്കുക.
20b+4c=32,20b+20c=40
ലഘൂകരിക്കുക.
20b-20b+4c-20c=32-40
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 20b+4c=32 എന്നതിൽ നിന്ന് 20b+20c=40 കുറയ്ക്കുക.
4c-20c=32-40
20b, -20b എന്നതിൽ ചേർക്കുക. 20b, -20b എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-16c=32-40
4c, -20c എന്നതിൽ ചേർക്കുക.
-16c=-8
32, -40 എന്നതിൽ ചേർക്കുക.
c=\frac{1}{2}
ഇരുവശങ്ങളെയും -16 കൊണ്ട് ഹരിക്കുക.
4b+4\times \frac{1}{2}=8
4b+4c=8 എന്നതിലെ c എന്നതിനായി \frac{1}{2} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് b എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
4b+2=8
4, \frac{1}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4b=6
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
b=\frac{3}{2}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
b=\frac{3}{2},c=\frac{1}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}