പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y, x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x+4y=-34
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 4y ഇരു വശങ്ങളിലും ചേർക്കുക.
4y-5x=-70,4y+x=-34
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
4y-5x=-70
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള y മാറ്റിനിർത്തിക്കൊണ്ട് y എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
4y=5x-70
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 5x ചേർക്കുക.
y=\frac{1}{4}\left(5x-70\right)
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
y=\frac{5}{4}x-\frac{35}{2}
\frac{1}{4}, -70+5x എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4\left(\frac{5}{4}x-\frac{35}{2}\right)+x=-34
4y+x=-34 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ y എന്നതിനായി -\frac{35}{2}+\frac{5x}{4} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
5x-70+x=-34
4, -\frac{35}{2}+\frac{5x}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6x-70=-34
5x, x എന്നതിൽ ചേർക്കുക.
6x=36
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 70 ചേർക്കുക.
x=6
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
y=\frac{5}{4}\times 6-\frac{35}{2}
y=\frac{5}{4}x-\frac{35}{2} എന്നതിലെ x എന്നതിനായി 6 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
y=\frac{15-35}{2}
\frac{5}{4}, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=-10
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{35}{2} എന്നത് \frac{15}{2} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
y=-10,x=6
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x+4y=-34
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 4y ഇരു വശങ്ങളിലും ചേർക്കുക.
4y-5x=-70,4y+x=-34
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}4&-5\\4&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-70\\-34\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}4&-5\\4&1\end{matrix}\right))\left(\begin{matrix}4&-5\\4&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\4&1\end{matrix}\right))\left(\begin{matrix}-70\\-34\end{matrix}\right)
\left(\begin{matrix}4&-5\\4&1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\4&1\end{matrix}\right))\left(\begin{matrix}-70\\-34\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\4&1\end{matrix}\right))\left(\begin{matrix}-70\\-34\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-5\times 4\right)}&-\frac{-5}{4-\left(-5\times 4\right)}\\-\frac{4}{4-\left(-5\times 4\right)}&\frac{4}{4-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-70\\-34\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{24}&\frac{5}{24}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-70\\-34\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{24}\left(-70\right)+\frac{5}{24}\left(-34\right)\\-\frac{1}{6}\left(-70\right)+\frac{1}{6}\left(-34\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-10\\6\end{matrix}\right)
ഗണിതം ചെയ്യുക.
y=-10,x=6
y, x എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
x+4y=-34
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 4y ഇരു വശങ്ങളിലും ചേർക്കുക.
4y-5x=-70,4y+x=-34
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
4y-4y-5x-x=-70+34
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 4y-5x=-70 എന്നതിൽ നിന്ന് 4y+x=-34 കുറയ്ക്കുക.
-5x-x=-70+34
4y, -4y എന്നതിൽ ചേർക്കുക. 4y, -4y എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-6x=-70+34
-5x, -x എന്നതിൽ ചേർക്കുക.
-6x=-36
-70, 34 എന്നതിൽ ചേർക്കുക.
x=6
ഇരുവശങ്ങളെയും -6 കൊണ്ട് ഹരിക്കുക.
4y+6=-34
4y+x=-34 എന്നതിലെ x എന്നതിനായി 6 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
4y=-40
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.
y=-10
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
y=-10,x=6
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.