x, y എന്നതിനായി സോൾവ് ചെയ്യുക
x=1
y=-2
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
4x-3y-10=0,3x+4y+5=0
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
4x-3y-10=0
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
4x-3y=10
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 10 ചേർക്കുക.
4x=3y+10
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 3y ചേർക്കുക.
x=\frac{1}{4}\left(3y+10\right)
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x=\frac{3}{4}y+\frac{5}{2}
\frac{1}{4}, 3y+10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3\left(\frac{3}{4}y+\frac{5}{2}\right)+4y+5=0
3x+4y+5=0 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{3y}{4}+\frac{5}{2} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{9}{4}y+\frac{15}{2}+4y+5=0
3, \frac{3y}{4}+\frac{5}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{25}{4}y+\frac{15}{2}+5=0
\frac{9y}{4}, 4y എന്നതിൽ ചേർക്കുക.
\frac{25}{4}y+\frac{25}{2}=0
\frac{15}{2}, 5 എന്നതിൽ ചേർക്കുക.
\frac{25}{4}y=-\frac{25}{2}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{25}{2} കുറയ്ക്കുക.
y=-2
\frac{25}{4} കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=\frac{3}{4}\left(-2\right)+\frac{5}{2}
x=\frac{3}{4}y+\frac{5}{2} എന്നതിലെ y എന്നതിനായി -2 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{-3+5}{2}
\frac{3}{4}, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=1
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{5}{2} എന്നത് -\frac{3}{2} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=1,y=-2
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
4x-3y-10=0,3x+4y+5=0
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}4&-3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-5\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}4&-3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\-5\end{matrix}\right)
\left(\begin{matrix}4&-3\\3&4\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\-5\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\-5\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-\left(-3\times 3\right)}&-\frac{-3}{4\times 4-\left(-3\times 3\right)}\\-\frac{3}{4\times 4-\left(-3\times 3\right)}&\frac{4}{4\times 4-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}10\\-5\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{3}{25}\\-\frac{3}{25}&\frac{4}{25}\end{matrix}\right)\left(\begin{matrix}10\\-5\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 10+\frac{3}{25}\left(-5\right)\\-\frac{3}{25}\times 10+\frac{4}{25}\left(-5\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=1,y=-2
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
4x-3y-10=0,3x+4y+5=0
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
3\times 4x+3\left(-3\right)y+3\left(-10\right)=0,4\times 3x+4\times 4y+4\times 5=0
4x, 3x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 4 കൊണ്ടും ഗുണിക്കുക.
12x-9y-30=0,12x+16y+20=0
ലഘൂകരിക്കുക.
12x-12x-9y-16y-30-20=0
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 12x-9y-30=0 എന്നതിൽ നിന്ന് 12x+16y+20=0 കുറയ്ക്കുക.
-9y-16y-30-20=0
12x, -12x എന്നതിൽ ചേർക്കുക. 12x, -12x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-25y-30-20=0
-9y, -16y എന്നതിൽ ചേർക്കുക.
-25y-50=0
-30, -20 എന്നതിൽ ചേർക്കുക.
-25y=50
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 50 ചേർക്കുക.
y=-2
ഇരുവശങ്ങളെയും -25 കൊണ്ട് ഹരിക്കുക.
3x+4\left(-2\right)+5=0
3x+4y+5=0 എന്നതിലെ y എന്നതിനായി -2 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
3x-8+5=0
4, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3x-3=0
-8, 5 എന്നതിൽ ചേർക്കുക.
3x=3
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 3 ചേർക്കുക.
x=1
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=1,y=-2
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}