പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4x-2y=5,3x-4y=15
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
4x-2y=5
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
4x=2y+5
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 2y ചേർക്കുക.
x=\frac{1}{4}\left(2y+5\right)
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x=\frac{1}{2}y+\frac{5}{4}
\frac{1}{4}, 2y+5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3\left(\frac{1}{2}y+\frac{5}{4}\right)-4y=15
3x-4y=15 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{y}{2}+\frac{5}{4} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{3}{2}y+\frac{15}{4}-4y=15
3, \frac{y}{2}+\frac{5}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{5}{2}y+\frac{15}{4}=15
\frac{3y}{2}, -4y എന്നതിൽ ചേർക്കുക.
-\frac{5}{2}y=\frac{45}{4}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{15}{4} കുറയ്ക്കുക.
y=-\frac{9}{2}
-\frac{5}{2} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=\frac{1}{2}\left(-\frac{9}{2}\right)+\frac{5}{4}
x=\frac{1}{2}y+\frac{5}{4} എന്നതിലെ y എന്നതിനായി -\frac{9}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{-9+5}{4}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{1}{2}, -\frac{9}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-1
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{5}{4} എന്നത് -\frac{9}{4} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-1,y=-\frac{9}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
4x-2y=5,3x-4y=15
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\15\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-\left(-2\times 3\right)}&-\frac{-2}{4\left(-4\right)-\left(-2\times 3\right)}\\-\frac{3}{4\left(-4\right)-\left(-2\times 3\right)}&\frac{4}{4\left(-4\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\15\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\\frac{3}{10}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\15\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 5-\frac{1}{5}\times 15\\\frac{3}{10}\times 5-\frac{2}{5}\times 15\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-\frac{9}{2}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-1,y=-\frac{9}{2}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
4x-2y=5,3x-4y=15
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
3\times 4x+3\left(-2\right)y=3\times 5,4\times 3x+4\left(-4\right)y=4\times 15
4x, 3x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 4 കൊണ്ടും ഗുണിക്കുക.
12x-6y=15,12x-16y=60
ലഘൂകരിക്കുക.
12x-12x-6y+16y=15-60
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 12x-6y=15 എന്നതിൽ നിന്ന് 12x-16y=60 കുറയ്ക്കുക.
-6y+16y=15-60
12x, -12x എന്നതിൽ ചേർക്കുക. 12x, -12x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
10y=15-60
-6y, 16y എന്നതിൽ ചേർക്കുക.
10y=-45
15, -60 എന്നതിൽ ചേർക്കുക.
y=-\frac{9}{2}
ഇരുവശങ്ങളെയും 10 കൊണ്ട് ഹരിക്കുക.
3x-4\left(-\frac{9}{2}\right)=15
3x-4y=15 എന്നതിലെ y എന്നതിനായി -\frac{9}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
3x+18=15
-4, -\frac{9}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3x=-3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 18 കുറയ്ക്കുക.
x=-1
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=-1,y=-\frac{9}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.