പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4x+2y=18,-3x-6y=27
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
4x+2y=18
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
4x=-2y+18
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2y കുറയ്ക്കുക.
x=\frac{1}{4}\left(-2y+18\right)
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{2}y+\frac{9}{2}
\frac{1}{4}, -2y+18 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-3\left(-\frac{1}{2}y+\frac{9}{2}\right)-6y=27
-3x-6y=27 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{-y+9}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{3}{2}y-\frac{27}{2}-6y=27
-3, \frac{-y+9}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{9}{2}y-\frac{27}{2}=27
\frac{3y}{2}, -6y എന്നതിൽ ചേർക്കുക.
-\frac{9}{2}y=\frac{81}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{27}{2} ചേർക്കുക.
y=-9
-\frac{9}{2} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{1}{2}\left(-9\right)+\frac{9}{2}
x=-\frac{1}{2}y+\frac{9}{2} എന്നതിലെ y എന്നതിനായി -9 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{9+9}{2}
-\frac{1}{2}, -9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=9
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{9}{2} എന്നത് \frac{9}{2} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=9,y=-9
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
4x+2y=18,-3x-6y=27
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\27\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{4\left(-6\right)-2\left(-3\right)}&-\frac{2}{4\left(-6\right)-2\left(-3\right)}\\-\frac{-3}{4\left(-6\right)-2\left(-3\right)}&\frac{4}{4\left(-6\right)-2\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}18\\27\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{9}\\-\frac{1}{6}&-\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}18\\27\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 18+\frac{1}{9}\times 27\\-\frac{1}{6}\times 18-\frac{2}{9}\times 27\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-9\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=9,y=-9
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
4x+2y=18,-3x-6y=27
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
-3\times 4x-3\times 2y=-3\times 18,4\left(-3\right)x+4\left(-6\right)y=4\times 27
4x, -3x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -3 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 4 കൊണ്ടും ഗുണിക്കുക.
-12x-6y=-54,-12x-24y=108
ലഘൂകരിക്കുക.
-12x+12x-6y+24y=-54-108
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -12x-6y=-54 എന്നതിൽ നിന്ന് -12x-24y=108 കുറയ്ക്കുക.
-6y+24y=-54-108
-12x, 12x എന്നതിൽ ചേർക്കുക. -12x, 12x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
18y=-54-108
-6y, 24y എന്നതിൽ ചേർക്കുക.
18y=-162
-54, -108 എന്നതിൽ ചേർക്കുക.
y=-9
ഇരുവശങ്ങളെയും 18 കൊണ്ട് ഹരിക്കുക.
-3x-6\left(-9\right)=27
-3x-6y=27 എന്നതിലെ y എന്നതിനായി -9 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-3x+54=27
-6, -9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-3x=-27
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 54 കുറയ്ക്കുക.
x=9
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
x=9,y=-9
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.