A, D എന്നതിനായി സോൾവ് ചെയ്യുക
A=-\frac{7}{24}\approx -0.291666667
D=-\frac{13}{24}\approx -0.541666667
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
3A-9D=4
ആദ്യ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
8A-8D=2
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
3A-9D=4,8A-8D=2
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3A-9D=4
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള A മാറ്റിനിർത്തിക്കൊണ്ട് A എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
3A=9D+4
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 9D ചേർക്കുക.
A=\frac{1}{3}\left(9D+4\right)
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
A=3D+\frac{4}{3}
\frac{1}{3}, 9D+4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
8\left(3D+\frac{4}{3}\right)-8D=2
8A-8D=2 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ A എന്നതിനായി 3D+\frac{4}{3} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
24D+\frac{32}{3}-8D=2
8, 3D+\frac{4}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
16D+\frac{32}{3}=2
24D, -8D എന്നതിൽ ചേർക്കുക.
16D=-\frac{26}{3}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{32}{3} കുറയ്ക്കുക.
D=-\frac{13}{24}
ഇരുവശങ്ങളെയും 16 കൊണ്ട് ഹരിക്കുക.
A=3\left(-\frac{13}{24}\right)+\frac{4}{3}
A=3D+\frac{4}{3} എന്നതിലെ D എന്നതിനായി -\frac{13}{24} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് A എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
A=-\frac{13}{8}+\frac{4}{3}
3, -\frac{13}{24} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
A=-\frac{7}{24}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{4}{3} എന്നത് -\frac{13}{8} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
A=-\frac{7}{24},D=-\frac{13}{24}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
3A-9D=4
ആദ്യ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
8A-8D=2
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
3A-9D=4,8A-8D=2
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right)\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right)\left(\begin{matrix}A\\D\end{matrix}\right)=inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\D\end{matrix}\right)=inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}A\\D\end{matrix}\right)=inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-\left(-9\times 8\right)}&-\frac{-9}{3\left(-8\right)-\left(-9\times 8\right)}\\-\frac{8}{3\left(-8\right)-\left(-9\times 8\right)}&\frac{3}{3\left(-8\right)-\left(-9\times 8\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{3}{16}\\-\frac{1}{6}&\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 4+\frac{3}{16}\times 2\\-\frac{1}{6}\times 4+\frac{1}{16}\times 2\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{24}\\-\frac{13}{24}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
A=-\frac{7}{24},D=-\frac{13}{24}
A, D എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
3A-9D=4
ആദ്യ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
8A-8D=2
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
3A-9D=4,8A-8D=2
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
8\times 3A+8\left(-9\right)D=8\times 4,3\times 8A+3\left(-8\right)D=3\times 2
3A, 8A എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 8 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും ഗുണിക്കുക.
24A-72D=32,24A-24D=6
ലഘൂകരിക്കുക.
24A-24A-72D+24D=32-6
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 24A-72D=32 എന്നതിൽ നിന്ന് 24A-24D=6 കുറയ്ക്കുക.
-72D+24D=32-6
24A, -24A എന്നതിൽ ചേർക്കുക. 24A, -24A എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-48D=32-6
-72D, 24D എന്നതിൽ ചേർക്കുക.
-48D=26
32, -6 എന്നതിൽ ചേർക്കുക.
D=-\frac{13}{24}
ഇരുവശങ്ങളെയും -48 കൊണ്ട് ഹരിക്കുക.
8A-8\left(-\frac{13}{24}\right)=2
8A-8D=2 എന്നതിലെ D എന്നതിനായി -\frac{13}{24} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് A എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
8A+\frac{13}{3}=2
-8, -\frac{13}{24} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
8A=-\frac{7}{3}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{13}{3} കുറയ്ക്കുക.
A=-\frac{7}{24}
ഇരുവശങ്ങളെയും 8 കൊണ്ട് ഹരിക്കുക.
A=-\frac{7}{24},D=-\frac{13}{24}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}