പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x+2y=32,-x+3y=15
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3x+2y=32
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
3x=-2y+32
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2y കുറയ്ക്കുക.
x=\frac{1}{3}\left(-2y+32\right)
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=-\frac{2}{3}y+\frac{32}{3}
\frac{1}{3}, -2y+32 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\left(-\frac{2}{3}y+\frac{32}{3}\right)+3y=15
-x+3y=15 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{-2y+32}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{2}{3}y-\frac{32}{3}+3y=15
-1, \frac{-2y+32}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{11}{3}y-\frac{32}{3}=15
\frac{2y}{3}, 3y എന്നതിൽ ചേർക്കുക.
\frac{11}{3}y=\frac{77}{3}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{32}{3} ചേർക്കുക.
y=7
\frac{11}{3} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{2}{3}\times 7+\frac{32}{3}
x=-\frac{2}{3}y+\frac{32}{3} എന്നതിലെ y എന്നതിനായി 7 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{-14+32}{3}
-\frac{2}{3}, 7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=6
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{32}{3} എന്നത് -\frac{14}{3} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=6,y=7
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
3x+2y=32,-x+3y=15
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}3&2\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\15\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}3&2\\-1&3\end{matrix}\right))\left(\begin{matrix}3&2\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\-1&3\end{matrix}\right))\left(\begin{matrix}32\\15\end{matrix}\right)
\left(\begin{matrix}3&2\\-1&3\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\-1&3\end{matrix}\right))\left(\begin{matrix}32\\15\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\-1&3\end{matrix}\right))\left(\begin{matrix}32\\15\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-2\left(-1\right)}&-\frac{2}{3\times 3-2\left(-1\right)}\\-\frac{-1}{3\times 3-2\left(-1\right)}&\frac{3}{3\times 3-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}32\\15\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&-\frac{2}{11}\\\frac{1}{11}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}32\\15\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 32-\frac{2}{11}\times 15\\\frac{1}{11}\times 32+\frac{3}{11}\times 15\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\7\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=6,y=7
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
3x+2y=32,-x+3y=15
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
-3x-2y=-32,3\left(-1\right)x+3\times 3y=3\times 15
3x, -x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -1 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും ഗുണിക്കുക.
-3x-2y=-32,-3x+9y=45
ലഘൂകരിക്കുക.
-3x+3x-2y-9y=-32-45
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -3x-2y=-32 എന്നതിൽ നിന്ന് -3x+9y=45 കുറയ്ക്കുക.
-2y-9y=-32-45
-3x, 3x എന്നതിൽ ചേർക്കുക. -3x, 3x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-11y=-32-45
-2y, -9y എന്നതിൽ ചേർക്കുക.
-11y=-77
-32, -45 എന്നതിൽ ചേർക്കുക.
y=7
ഇരുവശങ്ങളെയും -11 കൊണ്ട് ഹരിക്കുക.
-x+3\times 7=15
-x+3y=15 എന്നതിലെ y എന്നതിനായി 7 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-x+21=15
3, 7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-x=-6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 21 കുറയ്ക്കുക.
x=6
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x=6,y=7
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.