A, c എന്നതിനായി സോൾവ് ചെയ്യുക
A = -\frac{162}{77} = -2\frac{8}{77} \approx -2.103896104
c = \frac{1473}{77} = 19\frac{10}{77} \approx 19.12987013
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
3A-13c=-255,31A-6c=-180
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3A-13c=-255
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള A മാറ്റിനിർത്തിക്കൊണ്ട് A എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
3A=13c-255
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 13c ചേർക്കുക.
A=\frac{1}{3}\left(13c-255\right)
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
A=\frac{13}{3}c-85
\frac{1}{3}, 13c-255 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
31\left(\frac{13}{3}c-85\right)-6c=-180
31A-6c=-180 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ A എന്നതിനായി \frac{13c}{3}-85 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{403}{3}c-2635-6c=-180
31, \frac{13c}{3}-85 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{385}{3}c-2635=-180
\frac{403c}{3}, -6c എന്നതിൽ ചേർക്കുക.
\frac{385}{3}c=2455
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 2635 ചേർക്കുക.
c=\frac{1473}{77}
\frac{385}{3} കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
A=\frac{13}{3}\times \frac{1473}{77}-85
A=\frac{13}{3}c-85 എന്നതിലെ c എന്നതിനായി \frac{1473}{77} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് A എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
A=\frac{6383}{77}-85
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{13}{3}, \frac{1473}{77} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
A=-\frac{162}{77}
-85, \frac{6383}{77} എന്നതിൽ ചേർക്കുക.
A=-\frac{162}{77},c=\frac{1473}{77}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
3A-13c=-255,31A-6c=-180
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right)\left(\begin{matrix}A\\c\end{matrix}\right)=\left(\begin{matrix}-255\\-180\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right))\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right)\left(\begin{matrix}A\\c\end{matrix}\right)=inverse(\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right))\left(\begin{matrix}-255\\-180\end{matrix}\right)
\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\c\end{matrix}\right)=inverse(\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right))\left(\begin{matrix}-255\\-180\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}A\\c\end{matrix}\right)=inverse(\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right))\left(\begin{matrix}-255\\-180\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}A\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{3\left(-6\right)-\left(-13\times 31\right)}&-\frac{-13}{3\left(-6\right)-\left(-13\times 31\right)}\\-\frac{31}{3\left(-6\right)-\left(-13\times 31\right)}&\frac{3}{3\left(-6\right)-\left(-13\times 31\right)}\end{matrix}\right)\left(\begin{matrix}-255\\-180\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}A\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{385}&\frac{13}{385}\\-\frac{31}{385}&\frac{3}{385}\end{matrix}\right)\left(\begin{matrix}-255\\-180\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}A\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{385}\left(-255\right)+\frac{13}{385}\left(-180\right)\\-\frac{31}{385}\left(-255\right)+\frac{3}{385}\left(-180\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}A\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{162}{77}\\\frac{1473}{77}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
A=-\frac{162}{77},c=\frac{1473}{77}
A, c എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
3A-13c=-255,31A-6c=-180
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
31\times 3A+31\left(-13\right)c=31\left(-255\right),3\times 31A+3\left(-6\right)c=3\left(-180\right)
3A, 31A എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 31 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും ഗുണിക്കുക.
93A-403c=-7905,93A-18c=-540
ലഘൂകരിക്കുക.
93A-93A-403c+18c=-7905+540
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 93A-403c=-7905 എന്നതിൽ നിന്ന് 93A-18c=-540 കുറയ്ക്കുക.
-403c+18c=-7905+540
93A, -93A എന്നതിൽ ചേർക്കുക. 93A, -93A എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-385c=-7905+540
-403c, 18c എന്നതിൽ ചേർക്കുക.
-385c=-7365
-7905, 540 എന്നതിൽ ചേർക്കുക.
c=\frac{1473}{77}
ഇരുവശങ്ങളെയും -385 കൊണ്ട് ഹരിക്കുക.
31A-6\times \frac{1473}{77}=-180
31A-6c=-180 എന്നതിലെ c എന്നതിനായി \frac{1473}{77} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് A എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
31A-\frac{8838}{77}=-180
-6, \frac{1473}{77} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
31A=-\frac{5022}{77}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{8838}{77} ചേർക്കുക.
A=-\frac{162}{77}
ഇരുവശങ്ങളെയും 31 കൊണ്ട് ഹരിക്കുക.
A=-\frac{162}{77},c=\frac{1473}{77}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}