പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x-4y=10,6x-4y=11
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2x-4y=10
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
2x=4y+10
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 4y ചേർക്കുക.
x=\frac{1}{2}\left(4y+10\right)
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=2y+5
\frac{1}{2}, 4y+10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6\left(2y+5\right)-4y=11
6x-4y=11 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി 2y+5 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
12y+30-4y=11
6, 2y+5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
8y+30=11
12y, -4y എന്നതിൽ ചേർക്കുക.
8y=-19
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 30 കുറയ്ക്കുക.
y=-\frac{19}{8}
ഇരുവശങ്ങളെയും 8 കൊണ്ട് ഹരിക്കുക.
x=2\left(-\frac{19}{8}\right)+5
x=2y+5 എന്നതിലെ y എന്നതിനായി -\frac{19}{8} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-\frac{19}{4}+5
2, -\frac{19}{8} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{1}{4}
5, -\frac{19}{4} എന്നതിൽ ചേർക്കുക.
x=\frac{1}{4},y=-\frac{19}{8}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
2x-4y=10,6x-4y=11
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\11\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-\left(-4\times 6\right)}&-\frac{-4}{2\left(-4\right)-\left(-4\times 6\right)}\\-\frac{6}{2\left(-4\right)-\left(-4\times 6\right)}&\frac{2}{2\left(-4\right)-\left(-4\times 6\right)}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\-\frac{3}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 10+\frac{1}{4}\times 11\\-\frac{3}{8}\times 10+\frac{1}{8}\times 11\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\-\frac{19}{8}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{1}{4},y=-\frac{19}{8}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
2x-4y=10,6x-4y=11
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
2x-6x-4y+4y=10-11
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 2x-4y=10 എന്നതിൽ നിന്ന് 6x-4y=11 കുറയ്ക്കുക.
2x-6x=10-11
-4y, 4y എന്നതിൽ ചേർക്കുക. -4y, 4y എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-4x=10-11
2x, -6x എന്നതിൽ ചേർക്കുക.
-4x=-1
10, -11 എന്നതിൽ ചേർക്കുക.
x=\frac{1}{4}
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക.
6\times \frac{1}{4}-4y=11
6x-4y=11 എന്നതിലെ x എന്നതിനായി \frac{1}{4} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
\frac{3}{2}-4y=11
6, \frac{1}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-4y=\frac{19}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{3}{2} കുറയ്ക്കുക.
y=-\frac{19}{8}
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക.
x=\frac{1}{4},y=-\frac{19}{8}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.