പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x+y=5,2x-y=5
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2x+y=5
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
2x=-y+5
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
x=\frac{1}{2}\left(-y+5\right)
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{2}y+\frac{5}{2}
\frac{1}{2}, -y+5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2\left(-\frac{1}{2}y+\frac{5}{2}\right)-y=5
2x-y=5 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{-y+5}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-y+5-y=5
2, \frac{-y+5}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-2y+5=5
-y, -y എന്നതിൽ ചേർക്കുക.
-2y=0
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക.
y=0
ഇരുവശങ്ങളെയും -2 കൊണ്ട് ഹരിക്കുക.
x=\frac{5}{2}
x=-\frac{1}{2}y+\frac{5}{2} എന്നതിലെ y എന്നതിനായി 0 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{5}{2},y=0
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
2x+y=5,2x-y=5
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}2&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}2&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
\left(\begin{matrix}2&1\\2&-1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-2}&-\frac{1}{2\left(-1\right)-2}\\-\frac{2}{2\left(-1\right)-2}&\frac{2}{2\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5+\frac{1}{4}\times 5\\\frac{1}{2}\times 5-\frac{1}{2}\times 5\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\0\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{5}{2},y=0
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
2x+y=5,2x-y=5
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
2x-2x+y+y=5-5
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 2x+y=5 എന്നതിൽ നിന്ന് 2x-y=5 കുറയ്ക്കുക.
y+y=5-5
2x, -2x എന്നതിൽ ചേർക്കുക. 2x, -2x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
2y=5-5
y, y എന്നതിൽ ചേർക്കുക.
2y=0
5, -5 എന്നതിൽ ചേർക്കുക.
y=0
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
2x=5
2x-y=5 എന്നതിലെ y എന്നതിനായി 0 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{5}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=\frac{5}{2},y=0
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.