പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x+6y=11,5x-7y=10
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2x+6y=11
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
2x=-6y+11
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 6y കുറയ്ക്കുക.
x=\frac{1}{2}\left(-6y+11\right)
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=-3y+\frac{11}{2}
\frac{1}{2}, -6y+11 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
5\left(-3y+\frac{11}{2}\right)-7y=10
5x-7y=10 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -3y+\frac{11}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-15y+\frac{55}{2}-7y=10
5, -3y+\frac{11}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-22y+\frac{55}{2}=10
-15y, -7y എന്നതിൽ ചേർക്കുക.
-22y=-\frac{35}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{55}{2} കുറയ്ക്കുക.
y=\frac{35}{44}
ഇരുവശങ്ങളെയും -22 കൊണ്ട് ഹരിക്കുക.
x=-3\times \frac{35}{44}+\frac{11}{2}
x=-3y+\frac{11}{2} എന്നതിലെ y എന്നതിനായി \frac{35}{44} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-\frac{105}{44}+\frac{11}{2}
-3, \frac{35}{44} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{137}{44}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{11}{2} എന്നത് -\frac{105}{44} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{137}{44},y=\frac{35}{44}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
2x+6y=11,5x-7y=10
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}2&6\\5&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\10\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}2&6\\5&-7\end{matrix}\right))\left(\begin{matrix}2&6\\5&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&6\\5&-7\end{matrix}\right))\left(\begin{matrix}11\\10\end{matrix}\right)
\left(\begin{matrix}2&6\\5&-7\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&6\\5&-7\end{matrix}\right))\left(\begin{matrix}11\\10\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&6\\5&-7\end{matrix}\right))\left(\begin{matrix}11\\10\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{2\left(-7\right)-6\times 5}&-\frac{6}{2\left(-7\right)-6\times 5}\\-\frac{5}{2\left(-7\right)-6\times 5}&\frac{2}{2\left(-7\right)-6\times 5}\end{matrix}\right)\left(\begin{matrix}11\\10\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{44}&\frac{3}{22}\\\frac{5}{44}&-\frac{1}{22}\end{matrix}\right)\left(\begin{matrix}11\\10\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{44}\times 11+\frac{3}{22}\times 10\\\frac{5}{44}\times 11-\frac{1}{22}\times 10\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{137}{44}\\\frac{35}{44}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{137}{44},y=\frac{35}{44}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
2x+6y=11,5x-7y=10
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
5\times 2x+5\times 6y=5\times 11,2\times 5x+2\left(-7\right)y=2\times 10
2x, 5x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 5 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും ഗുണിക്കുക.
10x+30y=55,10x-14y=20
ലഘൂകരിക്കുക.
10x-10x+30y+14y=55-20
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 10x+30y=55 എന്നതിൽ നിന്ന് 10x-14y=20 കുറയ്ക്കുക.
30y+14y=55-20
10x, -10x എന്നതിൽ ചേർക്കുക. 10x, -10x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
44y=55-20
30y, 14y എന്നതിൽ ചേർക്കുക.
44y=35
55, -20 എന്നതിൽ ചേർക്കുക.
y=\frac{35}{44}
ഇരുവശങ്ങളെയും 44 കൊണ്ട് ഹരിക്കുക.
5x-7\times \frac{35}{44}=10
5x-7y=10 എന്നതിലെ y എന്നതിനായി \frac{35}{44} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
5x-\frac{245}{44}=10
-7, \frac{35}{44} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
5x=\frac{685}{44}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{245}{44} ചേർക്കുക.
x=\frac{137}{44}
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
x=\frac{137}{44},y=\frac{35}{44}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.