പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x+4y=362,3x+2y=153.5
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2x+4y=362
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
2x=-4y+362
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 4y കുറയ്ക്കുക.
x=\frac{1}{2}\left(-4y+362\right)
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=-2y+181
\frac{1}{2}, -4y+362 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3\left(-2y+181\right)+2y=153.5
3x+2y=153.5 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -2y+181 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-6y+543+2y=153.5
3, -2y+181 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-4y+543=153.5
-6y, 2y എന്നതിൽ ചേർക്കുക.
-4y=-389.5
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 543 കുറയ്ക്കുക.
y=97.375
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക.
x=-2\times 97.375+181
x=-2y+181 എന്നതിലെ y എന്നതിനായി 97.375 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-194.75+181
-2, 97.375 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-13.75
181, -194.75 എന്നതിൽ ചേർക്കുക.
x=-13.75,y=97.375
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
2x+4y=362,3x+2y=153.5
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}2&4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}362\\153.5\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}2&4\\3&2\end{matrix}\right))\left(\begin{matrix}2&4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&2\end{matrix}\right))\left(\begin{matrix}362\\153.5\end{matrix}\right)
\left(\begin{matrix}2&4\\3&2\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&2\end{matrix}\right))\left(\begin{matrix}362\\153.5\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&2\end{matrix}\right))\left(\begin{matrix}362\\153.5\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-4\times 3}&-\frac{4}{2\times 2-4\times 3}\\-\frac{3}{2\times 2-4\times 3}&\frac{2}{2\times 2-4\times 3}\end{matrix}\right)\left(\begin{matrix}362\\153.5\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{2}\\\frac{3}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}362\\153.5\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 362+\frac{1}{2}\times 153.5\\\frac{3}{8}\times 362-\frac{1}{4}\times 153.5\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{55}{4}\\\frac{779}{8}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-\frac{55}{4},y=\frac{779}{8}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
2x+4y=362,3x+2y=153.5
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
3\times 2x+3\times 4y=3\times 362,2\times 3x+2\times 2y=2\times 153.5
2x, 3x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും ഗുണിക്കുക.
6x+12y=1086,6x+4y=307
ലഘൂകരിക്കുക.
6x-6x+12y-4y=1086-307
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 6x+12y=1086 എന്നതിൽ നിന്ന് 6x+4y=307 കുറയ്ക്കുക.
12y-4y=1086-307
6x, -6x എന്നതിൽ ചേർക്കുക. 6x, -6x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
8y=1086-307
12y, -4y എന്നതിൽ ചേർക്കുക.
8y=779
1086, -307 എന്നതിൽ ചേർക്കുക.
y=\frac{779}{8}
ഇരുവശങ്ങളെയും 8 കൊണ്ട് ഹരിക്കുക.
3x+2\times \frac{779}{8}=153.5
3x+2y=153.5 എന്നതിലെ y എന്നതിനായി \frac{779}{8} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
3x+\frac{779}{4}=153.5
2, \frac{779}{8} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3x=-\frac{165}{4}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{779}{4} കുറയ്ക്കുക.
x=-\frac{55}{4}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=-\frac{55}{4},y=\frac{779}{8}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.