പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x+4y=12,3x+y=6
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2x+4y=12
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
2x=-4y+12
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 4y കുറയ്ക്കുക.
x=\frac{1}{2}\left(-4y+12\right)
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=-2y+6
\frac{1}{2}, -4y+12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3\left(-2y+6\right)+y=6
3x+y=6 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -2y+6 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-6y+18+y=6
3, -2y+6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-5y+18=6
-6y, y എന്നതിൽ ചേർക്കുക.
-5y=-12
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 18 കുറയ്ക്കുക.
y=\frac{12}{5}
ഇരുവശങ്ങളെയും -5 കൊണ്ട് ഹരിക്കുക.
x=-2\times \frac{12}{5}+6
x=-2y+6 എന്നതിലെ y എന്നതിനായി \frac{12}{5} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-\frac{24}{5}+6
-2, \frac{12}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{6}{5}
6, -\frac{24}{5} എന്നതിൽ ചേർക്കുക.
x=\frac{6}{5},y=\frac{12}{5}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
2x+4y=12,3x+y=6
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}2&4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\6\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}2&4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
\left(\begin{matrix}2&4\\3&1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-4\times 3}&-\frac{4}{2-4\times 3}\\-\frac{3}{2-4\times 3}&\frac{2}{2-4\times 3}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{2}{5}\\\frac{3}{10}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 12+\frac{2}{5}\times 6\\\frac{3}{10}\times 12-\frac{1}{5}\times 6\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\\\frac{12}{5}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{6}{5},y=\frac{12}{5}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
2x+4y=12,3x+y=6
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
3\times 2x+3\times 4y=3\times 12,2\times 3x+2y=2\times 6
2x, 3x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും ഗുണിക്കുക.
6x+12y=36,6x+2y=12
ലഘൂകരിക്കുക.
6x-6x+12y-2y=36-12
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 6x+12y=36 എന്നതിൽ നിന്ന് 6x+2y=12 കുറയ്ക്കുക.
12y-2y=36-12
6x, -6x എന്നതിൽ ചേർക്കുക. 6x, -6x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
10y=36-12
12y, -2y എന്നതിൽ ചേർക്കുക.
10y=24
36, -12 എന്നതിൽ ചേർക്കുക.
y=\frac{12}{5}
ഇരുവശങ്ങളെയും 10 കൊണ്ട് ഹരിക്കുക.
3x+\frac{12}{5}=6
3x+y=6 എന്നതിലെ y എന്നതിനായി \frac{12}{5} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
3x=\frac{18}{5}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{12}{5} കുറയ്ക്കുക.
x=\frac{6}{5}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=\frac{6}{5},y=\frac{12}{5}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.