പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x+y=\frac{\frac{1}{2}}{2}
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
3x+y=\frac{1}{2\times 2}
ഏക അംശമായി \frac{\frac{1}{2}}{2} ആവിഷ്‌ക്കരിക്കുക.
3x+y=\frac{1}{4}
4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
2x+8y=\frac{3}{2}\times 2
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. \frac{1}{2} എന്നതിന്‍റെ പരസ്‌പരപൂരകമായ 2 ഉപയോഗിച്ച് ഇരുവശങ്ങളും ഗുണിക്കുക.
2x+8y=3
3 നേടാൻ \frac{3}{2}, 2 എന്നിവ ഗുണിക്കുക.
3x+y=\frac{1}{4},2x+8y=3
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3x+y=\frac{1}{4}
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
3x=-y+\frac{1}{4}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
x=\frac{1}{3}\left(-y+\frac{1}{4}\right)
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{3}y+\frac{1}{12}
\frac{1}{3}, -y+\frac{1}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2\left(-\frac{1}{3}y+\frac{1}{12}\right)+8y=3
2x+8y=3 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{y}{3}+\frac{1}{12} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{2}{3}y+\frac{1}{6}+8y=3
2, -\frac{y}{3}+\frac{1}{12} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{22}{3}y+\frac{1}{6}=3
-\frac{2y}{3}, 8y എന്നതിൽ ചേർക്കുക.
\frac{22}{3}y=\frac{17}{6}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{6} കുറയ്ക്കുക.
y=\frac{17}{44}
\frac{22}{3} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{1}{3}\times \frac{17}{44}+\frac{1}{12}
x=-\frac{1}{3}y+\frac{1}{12} എന്നതിലെ y എന്നതിനായി \frac{17}{44} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-\frac{17}{132}+\frac{1}{12}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{1}{3}, \frac{17}{44} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-\frac{1}{22}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{12} എന്നത് -\frac{17}{132} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-\frac{1}{22},y=\frac{17}{44}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
3x+y=\frac{\frac{1}{2}}{2}
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
3x+y=\frac{1}{2\times 2}
ഏക അംശമായി \frac{\frac{1}{2}}{2} ആവിഷ്‌ക്കരിക്കുക.
3x+y=\frac{1}{4}
4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
2x+8y=\frac{3}{2}\times 2
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. \frac{1}{2} എന്നതിന്‍റെ പരസ്‌പരപൂരകമായ 2 ഉപയോഗിച്ച് ഇരുവശങ്ങളും ഗുണിക്കുക.
2x+8y=3
3 നേടാൻ \frac{3}{2}, 2 എന്നിവ ഗുണിക്കുക.
3x+y=\frac{1}{4},2x+8y=3
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}3&1\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}3&1\\2&8\end{matrix}\right))\left(\begin{matrix}3&1\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&8\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
\left(\begin{matrix}3&1\\2&8\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&8\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&8\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3\times 8-2}&-\frac{1}{3\times 8-2}\\-\frac{2}{3\times 8-2}&\frac{3}{3\times 8-2}\end{matrix}\right)\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&-\frac{1}{22}\\-\frac{1}{11}&\frac{3}{22}\end{matrix}\right)\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times \frac{1}{4}-\frac{1}{22}\times 3\\-\frac{1}{11}\times \frac{1}{4}+\frac{3}{22}\times 3\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{22}\\\frac{17}{44}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-\frac{1}{22},y=\frac{17}{44}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
3x+y=\frac{\frac{1}{2}}{2}
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
3x+y=\frac{1}{2\times 2}
ഏക അംശമായി \frac{\frac{1}{2}}{2} ആവിഷ്‌ക്കരിക്കുക.
3x+y=\frac{1}{4}
4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
2x+8y=\frac{3}{2}\times 2
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. \frac{1}{2} എന്നതിന്‍റെ പരസ്‌പരപൂരകമായ 2 ഉപയോഗിച്ച് ഇരുവശങ്ങളും ഗുണിക്കുക.
2x+8y=3
3 നേടാൻ \frac{3}{2}, 2 എന്നിവ ഗുണിക്കുക.
3x+y=\frac{1}{4},2x+8y=3
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
2\times 3x+2y=2\times \frac{1}{4},3\times 2x+3\times 8y=3\times 3
3x, 2x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും ഗുണിക്കുക.
6x+2y=\frac{1}{2},6x+24y=9
ലഘൂകരിക്കുക.
6x-6x+2y-24y=\frac{1}{2}-9
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 6x+2y=\frac{1}{2} എന്നതിൽ നിന്ന് 6x+24y=9 കുറയ്ക്കുക.
2y-24y=\frac{1}{2}-9
6x, -6x എന്നതിൽ ചേർക്കുക. 6x, -6x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-22y=\frac{1}{2}-9
2y, -24y എന്നതിൽ ചേർക്കുക.
-22y=-\frac{17}{2}
\frac{1}{2}, -9 എന്നതിൽ ചേർക്കുക.
y=\frac{17}{44}
ഇരുവശങ്ങളെയും -22 കൊണ്ട് ഹരിക്കുക.
2x+8\times \frac{17}{44}=3
2x+8y=3 എന്നതിലെ y എന്നതിനായി \frac{17}{44} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
2x+\frac{34}{11}=3
8, \frac{17}{44} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2x=-\frac{1}{11}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{34}{11} കുറയ്ക്കുക.
x=-\frac{1}{22}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{22},y=\frac{17}{44}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.