പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
a, b എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

18a+6b=-4,36a+6b=12
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
18a+6b=-4
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള a മാറ്റിനിർത്തിക്കൊണ്ട് a എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
18a=-6b-4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 6b കുറയ്ക്കുക.
a=\frac{1}{18}\left(-6b-4\right)
ഇരുവശങ്ങളെയും 18 കൊണ്ട് ഹരിക്കുക.
a=-\frac{1}{3}b-\frac{2}{9}
\frac{1}{18}, -6b-4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
36\left(-\frac{1}{3}b-\frac{2}{9}\right)+6b=12
36a+6b=12 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ a എന്നതിനായി -\frac{b}{3}-\frac{2}{9} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-12b-8+6b=12
36, -\frac{b}{3}-\frac{2}{9} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-6b-8=12
-12b, 6b എന്നതിൽ ചേർക്കുക.
-6b=20
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 8 ചേർക്കുക.
b=-\frac{10}{3}
ഇരുവശങ്ങളെയും -6 കൊണ്ട് ഹരിക്കുക.
a=-\frac{1}{3}\left(-\frac{10}{3}\right)-\frac{2}{9}
a=-\frac{1}{3}b-\frac{2}{9} എന്നതിലെ b എന്നതിനായി -\frac{10}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് a എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
a=\frac{10-2}{9}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{1}{3}, -\frac{10}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
a=\frac{8}{9}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{2}{9} എന്നത് \frac{10}{9} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
a=\frac{8}{9},b=-\frac{10}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
18a+6b=-4,36a+6b=12
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}18&6\\36&6\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-4\\12\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}18&6\\36&6\end{matrix}\right))\left(\begin{matrix}18&6\\36&6\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}18&6\\36&6\end{matrix}\right))\left(\begin{matrix}-4\\12\end{matrix}\right)
\left(\begin{matrix}18&6\\36&6\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}18&6\\36&6\end{matrix}\right))\left(\begin{matrix}-4\\12\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}18&6\\36&6\end{matrix}\right))\left(\begin{matrix}-4\\12\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{6}{18\times 6-6\times 36}&-\frac{6}{18\times 6-6\times 36}\\-\frac{36}{18\times 6-6\times 36}&\frac{18}{18\times 6-6\times 36}\end{matrix}\right)\left(\begin{matrix}-4\\12\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{18}&\frac{1}{18}\\\frac{1}{3}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-4\\12\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{18}\left(-4\right)+\frac{1}{18}\times 12\\\frac{1}{3}\left(-4\right)-\frac{1}{6}\times 12\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{8}{9}\\-\frac{10}{3}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
a=\frac{8}{9},b=-\frac{10}{3}
a, b എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
18a+6b=-4,36a+6b=12
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
18a-36a+6b-6b=-4-12
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 18a+6b=-4 എന്നതിൽ നിന്ന് 36a+6b=12 കുറയ്ക്കുക.
18a-36a=-4-12
6b, -6b എന്നതിൽ ചേർക്കുക. 6b, -6b എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-18a=-4-12
18a, -36a എന്നതിൽ ചേർക്കുക.
-18a=-16
-4, -12 എന്നതിൽ ചേർക്കുക.
a=\frac{8}{9}
ഇരുവശങ്ങളെയും -18 കൊണ്ട് ഹരിക്കുക.
36\times \frac{8}{9}+6b=12
36a+6b=12 എന്നതിലെ a എന്നതിനായി \frac{8}{9} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് b എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
32+6b=12
36, \frac{8}{9} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6b=-20
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 32 കുറയ്ക്കുക.
b=-\frac{10}{3}
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
a=\frac{8}{9},b=-\frac{10}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.