x, y എന്നതിനായി സോൾവ് ചെയ്യുക
x=100
y=50
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
0.04x+0.02y=5,0.5\left(x-2\right)-0.4y=29
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
0.04x+0.02y=5
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
0.04x=-0.02y+5
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{y}{50} കുറയ്ക്കുക.
x=25\left(-0.02y+5\right)
ഇരുവശങ്ങളെയും 25 കൊണ്ട് ഗുണിക്കുക.
x=-0.5y+125
25, -\frac{y}{50}+5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
0.5\left(-0.5y+125-2\right)-0.4y=29
0.5\left(x-2\right)-0.4y=29 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{y}{2}+125 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
0.5\left(-0.5y+123\right)-0.4y=29
125, -2 എന്നതിൽ ചേർക്കുക.
-0.25y+61.5-0.4y=29
0.5, -\frac{y}{2}+123 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-0.65y+61.5=29
-\frac{y}{4}, -\frac{2y}{5} എന്നതിൽ ചേർക്കുക.
-0.65y=-32.5
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 61.5 കുറയ്ക്കുക.
y=50
-0.65 കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-0.5\times 50+125
x=-0.5y+125 എന്നതിലെ y എന്നതിനായി 50 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-25+125
-0.5, 50 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=100
125, -25 എന്നതിൽ ചേർക്കുക.
x=100,y=50
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
0.04x+0.02y=5,0.5\left(x-2\right)-0.4y=29
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
0.5\left(x-2\right)-0.4y=29
രണ്ടാമത്തെ സമവാക്യം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് ലഘൂകരിക്കുക.
0.5x-1-0.4y=29
0.5, x-2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
0.5x-0.4y=30
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 1 ചേർക്കുക.
\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\30\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.4}{0.04\left(-0.4\right)-0.02\times 0.5}&-\frac{0.02}{0.04\left(-0.4\right)-0.02\times 0.5}\\-\frac{0.5}{0.04\left(-0.4\right)-0.02\times 0.5}&\frac{0.04}{0.04\left(-0.4\right)-0.02\times 0.5}\end{matrix}\right)\left(\begin{matrix}5\\30\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{200}{13}&\frac{10}{13}\\\frac{250}{13}&-\frac{20}{13}\end{matrix}\right)\left(\begin{matrix}5\\30\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{200}{13}\times 5+\frac{10}{13}\times 30\\\frac{250}{13}\times 5-\frac{20}{13}\times 30\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\50\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=100,y=50
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}