പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-x+y=-6,3x-2y=10
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-x+y=-6
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
-x=-y-6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
x=-\left(-y-6\right)
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x=y+6
-1, -y-6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3\left(y+6\right)-2y=10
3x-2y=10 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി y+6 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3y+18-2y=10
3, y+6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y+18=10
3y, -2y എന്നതിൽ ചേർക്കുക.
y=-8
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 18 കുറയ്ക്കുക.
x=-8+6
x=y+6 എന്നതിലെ y എന്നതിനായി -8 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-2
6, -8 എന്നതിൽ ചേർക്കുക.
x=-2,y=-8
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
-x+y=-6,3x-2y=10
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\10\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-3}&-\frac{1}{-\left(-2\right)-3}\\-\frac{3}{-\left(-2\right)-3}&-\frac{1}{-\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&1\\3&1\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-6\right)+10\\3\left(-6\right)+10\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-8\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-2,y=-8
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
-x+y=-6,3x-2y=10
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
3\left(-1\right)x+3y=3\left(-6\right),-3x-\left(-2y\right)=-10
-x, 3x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -1 കൊണ്ടും ഗുണിക്കുക.
-3x+3y=-18,-3x+2y=-10
ലഘൂകരിക്കുക.
-3x+3x+3y-2y=-18+10
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -3x+3y=-18 എന്നതിൽ നിന്ന് -3x+2y=-10 കുറയ്ക്കുക.
3y-2y=-18+10
-3x, 3x എന്നതിൽ ചേർക്കുക. -3x, 3x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
y=-18+10
3y, -2y എന്നതിൽ ചേർക്കുക.
y=-8
-18, 10 എന്നതിൽ ചേർക്കുക.
3x-2\left(-8\right)=10
3x-2y=10 എന്നതിലെ y എന്നതിനായി -8 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
3x+16=10
-2, -8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3x=-6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 16 കുറയ്ക്കുക.
x=-2
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=-2,y=-8
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.