പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-x+2y=17,2x+2y=-10
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-x+2y=17
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
-x=-2y+17
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2y കുറയ്ക്കുക.
x=-\left(-2y+17\right)
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x=2y-17
-1, -2y+17 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2\left(2y-17\right)+2y=-10
2x+2y=-10 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി 2y-17 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
4y-34+2y=-10
2, 2y-17 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6y-34=-10
4y, 2y എന്നതിൽ ചേർക്കുക.
6y=24
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 34 ചേർക്കുക.
y=4
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
x=2\times 4-17
x=2y-17 എന്നതിലെ y എന്നതിനായി 4 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=8-17
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-9
-17, 8 എന്നതിൽ ചേർക്കുക.
x=-9,y=4
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
-x+2y=17,2x+2y=-10
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}-1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-10\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}-1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}17\\-10\end{matrix}\right)
\left(\begin{matrix}-1&2\\2&2\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}17\\-10\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}17\\-10\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-2\times 2}&-\frac{2}{-2-2\times 2}\\-\frac{2}{-2-2\times 2}&-\frac{1}{-2-2\times 2}\end{matrix}\right)\left(\begin{matrix}17\\-10\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}17\\-10\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 17+\frac{1}{3}\left(-10\right)\\\frac{1}{3}\times 17+\frac{1}{6}\left(-10\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\4\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-9,y=4
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
-x+2y=17,2x+2y=-10
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
-x-2x+2y-2y=17+10
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -x+2y=17 എന്നതിൽ നിന്ന് 2x+2y=-10 കുറയ്ക്കുക.
-x-2x=17+10
2y, -2y എന്നതിൽ ചേർക്കുക. 2y, -2y എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-3x=17+10
-x, -2x എന്നതിൽ ചേർക്കുക.
-3x=27
17, 10 എന്നതിൽ ചേർക്കുക.
x=-9
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
2\left(-9\right)+2y=-10
2x+2y=-10 എന്നതിലെ x എന്നതിനായി -9 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-18+2y=-10
2, -9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2y=8
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 18 ചേർക്കുക.
y=4
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=-9,y=4
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.