x, y എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{15}{13} = 1\frac{2}{13} \approx 1.153846154
y=\frac{5}{13}\approx 0.384615385
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
-2x+6y=0,-7x+8y=-5
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-2x+6y=0
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
-2x=-6y
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 6y കുറയ്ക്കുക.
x=-\frac{1}{2}\left(-6\right)y
ഇരുവശങ്ങളെയും -2 കൊണ്ട് ഹരിക്കുക.
x=3y
-\frac{1}{2}, -6y എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-7\times 3y+8y=-5
-7x+8y=-5 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി 3y സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-21y+8y=-5
-7, 3y എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-13y=-5
-21y, 8y എന്നതിൽ ചേർക്കുക.
y=\frac{5}{13}
ഇരുവശങ്ങളെയും -13 കൊണ്ട് ഹരിക്കുക.
x=3\times \frac{5}{13}
x=3y എന്നതിലെ y എന്നതിനായി \frac{5}{13} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{15}{13}
3, \frac{5}{13} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{15}{13},y=\frac{5}{13}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
-2x+6y=0,-7x+8y=-5
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right))\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{-2\times 8-6\left(-7\right)}&-\frac{6}{-2\times 8-6\left(-7\right)}\\-\frac{-7}{-2\times 8-6\left(-7\right)}&-\frac{2}{-2\times 8-6\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}&-\frac{3}{13}\\\frac{7}{26}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{13}\left(-5\right)\\-\frac{1}{13}\left(-5\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{13}\\\frac{5}{13}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{15}{13},y=\frac{5}{13}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
-2x+6y=0,-7x+8y=-5
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
-7\left(-2\right)x-7\times 6y=0,-2\left(-7\right)x-2\times 8y=-2\left(-5\right)
-2x, -7x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -7 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -2 കൊണ്ടും ഗുണിക്കുക.
14x-42y=0,14x-16y=10
ലഘൂകരിക്കുക.
14x-14x-42y+16y=-10
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 14x-42y=0 എന്നതിൽ നിന്ന് 14x-16y=10 കുറയ്ക്കുക.
-42y+16y=-10
14x, -14x എന്നതിൽ ചേർക്കുക. 14x, -14x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-26y=-10
-42y, 16y എന്നതിൽ ചേർക്കുക.
y=\frac{5}{13}
ഇരുവശങ്ങളെയും -26 കൊണ്ട് ഹരിക്കുക.
-7x+8\times \frac{5}{13}=-5
-7x+8y=-5 എന്നതിലെ y എന്നതിനായി \frac{5}{13} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-7x+\frac{40}{13}=-5
8, \frac{5}{13} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-7x=-\frac{105}{13}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{40}{13} കുറയ്ക്കുക.
x=\frac{15}{13}
ഇരുവശങ്ങളെയും -7 കൊണ്ട് ഹരിക്കുക.
x=\frac{15}{13},y=\frac{5}{13}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}