പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-10x+20y=460,30x+60y=1620
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-10x+20y=460
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
-10x=-20y+460
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 20y കുറയ്ക്കുക.
x=-\frac{1}{10}\left(-20y+460\right)
ഇരുവശങ്ങളെയും -10 കൊണ്ട് ഹരിക്കുക.
x=2y-46
-\frac{1}{10}, -20y+460 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
30\left(2y-46\right)+60y=1620
30x+60y=1620 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -46+2y സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
60y-1380+60y=1620
30, -46+2y എന്നിവ തമ്മിൽ ഗുണിക്കുക.
120y-1380=1620
60y, 60y എന്നതിൽ ചേർക്കുക.
120y=3000
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 1380 ചേർക്കുക.
y=25
ഇരുവശങ്ങളെയും 120 കൊണ്ട് ഹരിക്കുക.
x=2\times 25-46
x=2y-46 എന്നതിലെ y എന്നതിനായി 25 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=50-46
2, 25 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=4
-46, 50 എന്നതിൽ ചേർക്കുക.
x=4,y=25
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
-10x+20y=460,30x+60y=1620
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}-10&20\\30&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}460\\1620\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}-10&20\\30&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
\left(\begin{matrix}-10&20\\30&60\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{60}{-10\times 60-20\times 30}&-\frac{20}{-10\times 60-20\times 30}\\-\frac{30}{-10\times 60-20\times 30}&-\frac{10}{-10\times 60-20\times 30}\end{matrix}\right)\left(\begin{matrix}460\\1620\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}&\frac{1}{60}\\\frac{1}{40}&\frac{1}{120}\end{matrix}\right)\left(\begin{matrix}460\\1620\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}\times 460+\frac{1}{60}\times 1620\\\frac{1}{40}\times 460+\frac{1}{120}\times 1620\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\25\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=4,y=25
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
-10x+20y=460,30x+60y=1620
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
30\left(-10\right)x+30\times 20y=30\times 460,-10\times 30x-10\times 60y=-10\times 1620
-10x, 30x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 30 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -10 കൊണ്ടും ഗുണിക്കുക.
-300x+600y=13800,-300x-600y=-16200
ലഘൂകരിക്കുക.
-300x+300x+600y+600y=13800+16200
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -300x+600y=13800 എന്നതിൽ നിന്ന് -300x-600y=-16200 കുറയ്ക്കുക.
600y+600y=13800+16200
-300x, 300x എന്നതിൽ ചേർക്കുക. -300x, 300x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
1200y=13800+16200
600y, 600y എന്നതിൽ ചേർക്കുക.
1200y=30000
13800, 16200 എന്നതിൽ ചേർക്കുക.
y=25
ഇരുവശങ്ങളെയും 1200 കൊണ്ട് ഹരിക്കുക.
30x+60\times 25=1620
30x+60y=1620 എന്നതിലെ y എന്നതിനായി 25 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
30x+1500=1620
60, 25 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
30x=120
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1500 കുറയ്ക്കുക.
x=4
ഇരുവശങ്ങളെയും 30 കൊണ്ട് ഹരിക്കുക.
x=4,y=25
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.