x, y എന്നതിനായി സോൾവ് ചെയ്യുക
x=-500
y=1000
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
-0.5x+0.1y=350,0.4x+0.2y=0
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-0.5x+0.1y=350
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
-0.5x=-0.1y+350
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{y}{10} കുറയ്ക്കുക.
x=-2\left(-0.1y+350\right)
ഇരുവശങ്ങളെയും -2 കൊണ്ട് ഗുണിക്കുക.
x=0.2y-700
-2, -\frac{y}{10}+350 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
0.4\left(0.2y-700\right)+0.2y=0
0.4x+0.2y=0 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{y}{5}-700 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
0.08y-280+0.2y=0
0.4, \frac{y}{5}-700 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
0.28y-280=0
\frac{2y}{25}, \frac{y}{5} എന്നതിൽ ചേർക്കുക.
0.28y=280
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 280 ചേർക്കുക.
y=1000
0.28 കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=0.2\times 1000-700
x=0.2y-700 എന്നതിലെ y എന്നതിനായി 1000 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=200-700
0.2, 1000 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-500
-700, 200 എന്നതിൽ ചേർക്കുക.
x=-500,y=1000
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
-0.5x+0.1y=350,0.4x+0.2y=0
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}350\\0\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}350\\0\end{matrix}\right)
\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}350\\0\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}350\\0\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.2}{-0.5\times 0.2-0.1\times 0.4}&-\frac{0.1}{-0.5\times 0.2-0.1\times 0.4}\\-\frac{0.4}{-0.5\times 0.2-0.1\times 0.4}&-\frac{0.5}{-0.5\times 0.2-0.1\times 0.4}\end{matrix}\right)\left(\begin{matrix}350\\0\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{7}&\frac{5}{7}\\\frac{20}{7}&\frac{25}{7}\end{matrix}\right)\left(\begin{matrix}350\\0\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{7}\times 350\\\frac{20}{7}\times 350\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-500\\1000\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-500,y=1000
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
-0.5x+0.1y=350,0.4x+0.2y=0
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
0.4\left(-0.5\right)x+0.4\times 0.1y=0.4\times 350,-0.5\times 0.4x-0.5\times 0.2y=0
-\frac{x}{2}, \frac{2x}{5} എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 0.4 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -0.5 കൊണ്ടും ഗുണിക്കുക.
-0.2x+0.04y=140,-0.2x-0.1y=0
ലഘൂകരിക്കുക.
-0.2x+0.2x+0.04y+0.1y=140
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -0.2x+0.04y=140 എന്നതിൽ നിന്ന് -0.2x-0.1y=0 കുറയ്ക്കുക.
0.04y+0.1y=140
-\frac{x}{5}, \frac{x}{5} എന്നതിൽ ചേർക്കുക. -\frac{x}{5}, \frac{x}{5} എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
0.14y=140
\frac{y}{25}, \frac{y}{10} എന്നതിൽ ചേർക്കുക.
y=1000
0.14 കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
0.4x+0.2\times 1000=0
0.4x+0.2y=0 എന്നതിലെ y എന്നതിനായി 1000 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
0.4x+200=0
0.2, 1000 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
0.4x=-200
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 200 കുറയ്ക്കുക.
x=-500
0.4 കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-500,y=1000
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}