പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

പങ്കിടുക

x^{2}-\left(\sqrt{2}\right)^{2}=2x\left(x-3\right)-2
\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-2=2x\left(x-3\right)-2
\sqrt{2} എന്നതിന്‍റെ വർഗ്ഗം 2 ആണ്.
x^{2}-2=2x^{2}-6x-2
x-3 കൊണ്ട് 2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-2-2x^{2}=-6x-2
ഇരുവശങ്ങളിൽ നിന്നും 2x^{2} കുറയ്ക്കുക.
-x^{2}-2=-6x-2
-x^{2} നേടാൻ x^{2}, -2x^{2} എന്നിവ യോജിപ്പിക്കുക.
-x^{2}-2+6x=-2
6x ഇരു വശങ്ങളിലും ചേർക്കുക.
-x^{2}-2+6x+2=0
2 ഇരു വശങ്ങളിലും ചേർക്കുക.
-x^{2}+6x=0
0 ലഭ്യമാക്കാൻ -2, 2 എന്നിവ ചേർക്കുക.
x=\frac{-6±\sqrt{6^{2}}}{2\left(-1\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -1 എന്നതും b എന്നതിനായി 6 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-6±6}{2\left(-1\right)}
6^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-6±6}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-6±6}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6, 6 എന്നതിൽ ചേർക്കുക.
x=0
-2 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-\frac{12}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-6±6}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6 എന്നതിൽ നിന്ന് 6 വ്യവകലനം ചെയ്യുക.
x=6
-2 കൊണ്ട് -12 എന്നതിനെ ഹരിക്കുക.
x=0 x=6
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}-\left(\sqrt{2}\right)^{2}=2x\left(x-3\right)-2
\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-2=2x\left(x-3\right)-2
\sqrt{2} എന്നതിന്‍റെ വർഗ്ഗം 2 ആണ്.
x^{2}-2=2x^{2}-6x-2
x-3 കൊണ്ട് 2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-2-2x^{2}=-6x-2
ഇരുവശങ്ങളിൽ നിന്നും 2x^{2} കുറയ്ക്കുക.
-x^{2}-2=-6x-2
-x^{2} നേടാൻ x^{2}, -2x^{2} എന്നിവ യോജിപ്പിക്കുക.
-x^{2}-2+6x=-2
6x ഇരു വശങ്ങളിലും ചേർക്കുക.
-x^{2}+6x=-2+2
2 ഇരു വശങ്ങളിലും ചേർക്കുക.
-x^{2}+6x=0
0 ലഭ്യമാക്കാൻ -2, 2 എന്നിവ ചേർക്കുക.
\frac{-x^{2}+6x}{-1}=\frac{0}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{6}{-1}x=\frac{0}{-1}
-1 കൊണ്ട് ഹരിക്കുന്നത്, -1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-6x=\frac{0}{-1}
-1 കൊണ്ട് 6 എന്നതിനെ ഹരിക്കുക.
x^{2}-6x=0
-1 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}-6x+\left(-3\right)^{2}=\left(-3\right)^{2}
-3 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -6-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -3 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-6x+9=9
-3 സ്ക്വയർ ചെയ്യുക.
\left(x-3\right)^{2}=9
x^{2}-6x+9 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-3\right)^{2}}=\sqrt{9}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-3=3 x-3=-3
ലഘൂകരിക്കുക.
x=6 x=0
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 3 ചേർക്കുക.