പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x-33y=858
ആദ്യ സമവാക്യം പരിഗണിക്കുക. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും 33 കൊണ്ട് ഗുണിക്കുക.
88x-y=5808
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും 88 കൊണ്ട് ഗുണിക്കുക.
x-33y=858,88x-y=5808
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x-33y=858
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
x=33y+858
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 33y ചേർക്കുക.
88\left(33y+858\right)-y=5808
88x-y=5808 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി 858+33y സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2904y+75504-y=5808
88, 858+33y എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2903y+75504=5808
2904y, -y എന്നതിൽ ചേർക്കുക.
2903y=-69696
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 75504 കുറയ്ക്കുക.
y=-\frac{69696}{2903}
ഇരുവശങ്ങളെയും 2903 കൊണ്ട് ഹരിക്കുക.
x=33\left(-\frac{69696}{2903}\right)+858
x=33y+858 എന്നതിലെ y എന്നതിനായി -\frac{69696}{2903} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-\frac{2299968}{2903}+858
33, -\frac{69696}{2903} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{190806}{2903}
858, -\frac{2299968}{2903} എന്നതിൽ ചേർക്കുക.
x=\frac{190806}{2903},y=-\frac{69696}{2903}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x-33y=858
ആദ്യ സമവാക്യം പരിഗണിക്കുക. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും 33 കൊണ്ട് ഗുണിക്കുക.
88x-y=5808
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും 88 കൊണ്ട് ഗുണിക്കുക.
x-33y=858,88x-y=5808
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}858\\5808\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-33\times 88\right)}&-\frac{-33}{-1-\left(-33\times 88\right)}\\-\frac{88}{-1-\left(-33\times 88\right)}&\frac{1}{-1-\left(-33\times 88\right)}\end{matrix}\right)\left(\begin{matrix}858\\5808\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2903}&\frac{33}{2903}\\-\frac{88}{2903}&\frac{1}{2903}\end{matrix}\right)\left(\begin{matrix}858\\5808\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2903}\times 858+\frac{33}{2903}\times 5808\\-\frac{88}{2903}\times 858+\frac{1}{2903}\times 5808\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{190806}{2903}\\-\frac{69696}{2903}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{190806}{2903},y=-\frac{69696}{2903}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
x-33y=858
ആദ്യ സമവാക്യം പരിഗണിക്കുക. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും 33 കൊണ്ട് ഗുണിക്കുക.
88x-y=5808
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും 88 കൊണ്ട് ഗുണിക്കുക.
x-33y=858,88x-y=5808
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
88x+88\left(-33\right)y=88\times 858,88x-y=5808
x, 88x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 88 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും ഗുണിക്കുക.
88x-2904y=75504,88x-y=5808
ലഘൂകരിക്കുക.
88x-88x-2904y+y=75504-5808
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 88x-2904y=75504 എന്നതിൽ നിന്ന് 88x-y=5808 കുറയ്ക്കുക.
-2904y+y=75504-5808
88x, -88x എന്നതിൽ ചേർക്കുക. 88x, -88x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-2903y=75504-5808
-2904y, y എന്നതിൽ ചേർക്കുക.
-2903y=69696
75504, -5808 എന്നതിൽ ചേർക്കുക.
y=-\frac{69696}{2903}
ഇരുവശങ്ങളെയും -2903 കൊണ്ട് ഹരിക്കുക.
88x-\left(-\frac{69696}{2903}\right)=5808
88x-y=5808 എന്നതിലെ y എന്നതിനായി -\frac{69696}{2903} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
88x=\frac{16790928}{2903}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{69696}{2903} കുറയ്ക്കുക.
x=\frac{190806}{2903}
ഇരുവശങ്ങളെയും 88 കൊണ്ട് ഹരിക്കുക.
x=\frac{190806}{2903},y=-\frac{69696}{2903}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.