പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
A, B എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{2}{3}A+B=400,A+\frac{4}{5}B=460
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{2}{3}A+B=400
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള A മാറ്റിനിർത്തിക്കൊണ്ട് A എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
\frac{2}{3}A=-B+400
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും B കുറയ്ക്കുക.
A=\frac{3}{2}\left(-B+400\right)
\frac{2}{3} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
A=-\frac{3}{2}B+600
\frac{3}{2}, -B+400 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{3}{2}B+600+\frac{4}{5}B=460
A+\frac{4}{5}B=460 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ A എന്നതിനായി -\frac{3B}{2}+600 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{7}{10}B+600=460
-\frac{3B}{2}, \frac{4B}{5} എന്നതിൽ ചേർക്കുക.
-\frac{7}{10}B=-140
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 600 കുറയ്ക്കുക.
B=200
-\frac{7}{10} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
A=-\frac{3}{2}\times 200+600
A=-\frac{3}{2}B+600 എന്നതിലെ B എന്നതിനായി 200 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് A എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
A=-300+600
-\frac{3}{2}, 200 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
A=300
600, -300 എന്നതിൽ ചേർക്കുക.
A=300,B=200
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
\frac{2}{3}A+B=400,A+\frac{4}{5}B=460
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}400\\460\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}400\\460\end{matrix}\right)
\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}400\\460\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}400\\460\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{4}{5}}{\frac{2}{3}\times \frac{4}{5}-1}&-\frac{1}{\frac{2}{3}\times \frac{4}{5}-1}\\-\frac{1}{\frac{2}{3}\times \frac{4}{5}-1}&\frac{\frac{2}{3}}{\frac{2}{3}\times \frac{4}{5}-1}\end{matrix}\right)\left(\begin{matrix}400\\460\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{7}&\frac{15}{7}\\\frac{15}{7}&-\frac{10}{7}\end{matrix}\right)\left(\begin{matrix}400\\460\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{7}\times 400+\frac{15}{7}\times 460\\\frac{15}{7}\times 400-\frac{10}{7}\times 460\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}300\\200\end{matrix}\right)
ഗണിതം ചെയ്യുക.
A=300,B=200
A, B എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
\frac{2}{3}A+B=400,A+\frac{4}{5}B=460
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
\frac{2}{3}A+B=400,\frac{2}{3}A+\frac{2}{3}\times \frac{4}{5}B=\frac{2}{3}\times 460
\frac{2A}{3}, A എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും \frac{2}{3} കൊണ്ടും ഗുണിക്കുക.
\frac{2}{3}A+B=400,\frac{2}{3}A+\frac{8}{15}B=\frac{920}{3}
ലഘൂകരിക്കുക.
\frac{2}{3}A-\frac{2}{3}A+B-\frac{8}{15}B=400-\frac{920}{3}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് \frac{2}{3}A+B=400 എന്നതിൽ നിന്ന് \frac{2}{3}A+\frac{8}{15}B=\frac{920}{3} കുറയ്ക്കുക.
B-\frac{8}{15}B=400-\frac{920}{3}
\frac{2A}{3}, -\frac{2A}{3} എന്നതിൽ ചേർക്കുക. \frac{2A}{3}, -\frac{2A}{3} എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
\frac{7}{15}B=400-\frac{920}{3}
B, -\frac{8B}{15} എന്നതിൽ ചേർക്കുക.
\frac{7}{15}B=\frac{280}{3}
400, -\frac{920}{3} എന്നതിൽ ചേർക്കുക.
B=200
\frac{7}{15} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
A+\frac{4}{5}\times 200=460
A+\frac{4}{5}B=460 എന്നതിലെ B എന്നതിനായി 200 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് A എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
A+160=460
\frac{4}{5}, 200 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
A=300
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 160 കുറയ്ക്കുക.
A=300,B=200
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.