പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y, x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{1}{5}y-x=\frac{1}{2},-\frac{1}{2}y+3x=10
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{1}{5}y-x=\frac{1}{2}
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള y മാറ്റിനിർത്തിക്കൊണ്ട് y എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
\frac{1}{5}y=x+\frac{1}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും x ചേർക്കുക.
y=5\left(x+\frac{1}{2}\right)
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഗുണിക്കുക.
y=5x+\frac{5}{2}
5, x+\frac{1}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{1}{2}\left(5x+\frac{5}{2}\right)+3x=10
-\frac{1}{2}y+3x=10 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ y എന്നതിനായി 5x+\frac{5}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{5}{2}x-\frac{5}{4}+3x=10
-\frac{1}{2}, 5x+\frac{5}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{1}{2}x-\frac{5}{4}=10
-\frac{5x}{2}, 3x എന്നതിൽ ചേർക്കുക.
\frac{1}{2}x=\frac{45}{4}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{5}{4} ചേർക്കുക.
x=\frac{45}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഗുണിക്കുക.
y=5\times \frac{45}{2}+\frac{5}{2}
y=5x+\frac{5}{2} എന്നതിലെ x എന്നതിനായി \frac{45}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
y=\frac{225+5}{2}
5, \frac{45}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=115
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{5}{2} എന്നത് \frac{225}{2} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
y=115,x=\frac{45}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
\frac{1}{5}y-x=\frac{1}{2},-\frac{1}{2}y+3x=10
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}\frac{1}{5}&-1\\-\frac{1}{2}&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\10\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}\frac{1}{5}&-1\\-\frac{1}{2}&3\end{matrix}\right))\left(\begin{matrix}\frac{1}{5}&-1\\-\frac{1}{2}&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&-1\\-\frac{1}{2}&3\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}\\10\end{matrix}\right)
\left(\begin{matrix}\frac{1}{5}&-1\\-\frac{1}{2}&3\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&-1\\-\frac{1}{2}&3\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}\\10\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&-1\\-\frac{1}{2}&3\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}\\10\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{\frac{1}{5}\times 3-\left(-\left(-\frac{1}{2}\right)\right)}&-\frac{-1}{\frac{1}{5}\times 3-\left(-\left(-\frac{1}{2}\right)\right)}\\-\frac{-\frac{1}{2}}{\frac{1}{5}\times 3-\left(-\left(-\frac{1}{2}\right)\right)}&\frac{\frac{1}{5}}{\frac{1}{5}\times 3-\left(-\left(-\frac{1}{2}\right)\right)}\end{matrix}\right)\left(\begin{matrix}\frac{1}{2}\\10\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}30&10\\5&2\end{matrix}\right)\left(\begin{matrix}\frac{1}{2}\\10\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}30\times \frac{1}{2}+10\times 10\\5\times \frac{1}{2}+2\times 10\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}115\\\frac{45}{2}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
y=115,x=\frac{45}{2}
y, x എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
\frac{1}{5}y-x=\frac{1}{2},-\frac{1}{2}y+3x=10
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
-\frac{1}{2}\times \frac{1}{5}y-\frac{1}{2}\left(-1\right)x=-\frac{1}{2}\times \frac{1}{2},\frac{1}{5}\left(-\frac{1}{2}\right)y+\frac{1}{5}\times 3x=\frac{1}{5}\times 10
\frac{y}{5}, -\frac{y}{2} എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -\frac{1}{2} കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും \frac{1}{5} കൊണ്ടും ഗുണിക്കുക.
-\frac{1}{10}y+\frac{1}{2}x=-\frac{1}{4},-\frac{1}{10}y+\frac{3}{5}x=2
ലഘൂകരിക്കുക.
-\frac{1}{10}y+\frac{1}{10}y+\frac{1}{2}x-\frac{3}{5}x=-\frac{1}{4}-2
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -\frac{1}{10}y+\frac{1}{2}x=-\frac{1}{4} എന്നതിൽ നിന്ന് -\frac{1}{10}y+\frac{3}{5}x=2 കുറയ്ക്കുക.
\frac{1}{2}x-\frac{3}{5}x=-\frac{1}{4}-2
-\frac{y}{10}, \frac{y}{10} എന്നതിൽ ചേർക്കുക. -\frac{y}{10}, \frac{y}{10} എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-\frac{1}{10}x=-\frac{1}{4}-2
\frac{x}{2}, -\frac{3x}{5} എന്നതിൽ ചേർക്കുക.
-\frac{1}{10}x=-\frac{9}{4}
-\frac{1}{4}, -2 എന്നതിൽ ചേർക്കുക.
x=\frac{45}{2}
ഇരുവശങ്ങളെയും -10 കൊണ്ട് ഗുണിക്കുക.
-\frac{1}{2}y+3\times \frac{45}{2}=10
-\frac{1}{2}y+3x=10 എന്നതിലെ x എന്നതിനായി \frac{45}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-\frac{1}{2}y+\frac{135}{2}=10
3, \frac{45}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{1}{2}y=-\frac{115}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{135}{2} കുറയ്ക്കുക.
y=115
ഇരുവശങ്ങളെയും -2 കൊണ്ട് ഗുണിക്കുക.
y=115,x=\frac{45}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.