x, y, z, a, b, c എന്നതിനായി സോൾവ് ചെയ്യുക
c=\sqrt{2}\approx 1.414213562
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}
ആദ്യ സമവാക്യം പരിഗണിക്കുക. \sqrt{2}-1 കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{1}{\sqrt{2}+1} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
x=\frac{\sqrt{2}-1}{\left(\sqrt{2}\right)^{2}-1^{2}}
\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\frac{\sqrt{2}-1}{2-1}
\sqrt{2} സ്ക്വയർ ചെയ്യുക. 1 സ്ക്വയർ ചെയ്യുക.
x=\frac{\sqrt{2}-1}{1}
1 നേടാൻ 2 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
x=\sqrt{2}-1
ഒന്ന് കൊണ്ട് ഹരിക്കപ്പെടുന്ന എല്ലാത്തിനും അതുതന്നെ ഉത്തരമായി ലഭിക്കുന്നു.
y=\sqrt{2}-1+1
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
y=\sqrt{2}
0 ലഭ്യമാക്കാൻ -1, 1 എന്നിവ ചേർക്കുക.
z=\sqrt{2}
മൂന്നാമത്തെ സമവാക്യം പരിഗണിക്കുക. അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
a=\sqrt{2}
നാലാമത്തെ സമവാക്യം പരിഗണിക്കുക. അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
b=\sqrt{2}
അഞ്ചാമത്തെ സമവാക്യം പരിഗണിക്കുക. അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
c=\sqrt{2}
സമവാക്യം പരിഗണിക്കുക (6). അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
x=\sqrt{2}-1 y=\sqrt{2} z=\sqrt{2} a=\sqrt{2} b=\sqrt{2} c=\sqrt{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}