x, y, z, a, b, c എന്നതിനായി സോൾവ് ചെയ്യുക
c=34
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
y=|\left(-3\right)^{2}-5\left(-3\right)+10|
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
y=|9-5\left(-3\right)+10|
2-ന്റെ പവറിലേക്ക് -3 കണക്കാക്കി 9 നേടുക.
y=|9+15+10|
15 നേടാൻ -5, -3 എന്നിവ ഗുണിക്കുക.
y=|24+10|
24 ലഭ്യമാക്കാൻ 9, 15 എന്നിവ ചേർക്കുക.
y=|34|
34 ലഭ്യമാക്കാൻ 24, 10 എന്നിവ ചേർക്കുക.
y=34
യഥാർത്ഥ സംഖ്യ a എന്നതിന്റെ കേവല മൂല്യം, a\geq 0 ആയിരിക്കുമ്പോൾ a ആണ് അല്ലെങ്കിൽ a<0 ആയിരിക്കുമ്പോൾ -a ആണ്. 34 എന്നതിന്റെ കേവല മൂല്യം 34 ആണ്.
z=34
മൂന്നാമത്തെ സമവാക്യം പരിഗണിക്കുക. അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
a=34
നാലാമത്തെ സമവാക്യം പരിഗണിക്കുക. അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
b=34
അഞ്ചാമത്തെ സമവാക്യം പരിഗണിക്കുക. അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
c=34
സമവാക്യം പരിഗണിക്കുക (6). അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
x=-3 y=34 z=34 a=34 b=34 c=34
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}