f, x, g, h, j, k എന്നതിനായി സോൾവ് ചെയ്യുക
k=i
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
h=i
നാലാമത്തെ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
i=g
മൂന്നാമത്തെ സമവാക്യം പരിഗണിക്കുക. അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
g=i
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
i=f\left(-\frac{1}{5}\right)
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
-5i=f
-\frac{1}{5} എന്നതിന്റെ പരസ്പരപൂരകമായ -5 ഉപയോഗിച്ച് ഇരുവശങ്ങളും ഗുണിക്കുക.
f=-5i
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
-5ix=-4x-4
ആദ്യ സമവാക്യം പരിഗണിക്കുക. അറിയപ്പെടുന്ന വേരിയബിളുകളുടെ മൂല്യങ്ങൾ സമവാക്യത്തിൽ ചേർക്കുക.
-5ix+4x=-4
4x ഇരു വശങ്ങളിലും ചേർക്കുക.
\left(4-5i\right)x=-4
\left(4-5i\right)x നേടാൻ -5ix, 4x എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-4}{4-5i}
ഇരുവശങ്ങളെയും 4-5i കൊണ്ട് ഹരിക്കുക.
x=\frac{-4\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)}
4+5i എന്ന ഛേദത്തിന്റെ സങ്കീർണ്ണ സംയോഗം കൊണ്ട് \frac{-4}{4-5i} എന്നതിന്റെ അംശവും ഛേദവും ഗുണിക്കുക.
x=\frac{-16-20i}{41}
\frac{-4\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)} എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
x=-\frac{16}{41}-\frac{20}{41}i
-\frac{16}{41}-\frac{20}{41}i ലഭിക്കാൻ 41 ഉപയോഗിച്ച് -16-20i വിഭജിക്കുക.
f=-5i x=-\frac{16}{41}-\frac{20}{41}i g=i h=i j=i k=i
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}