x, y, z എന്നതിനായി സോൾവ് ചെയ്യുക
x=\left(-\frac{1}{6}\right)arcSin(\frac{2}{3})+\frac{1}{3}\pi n_{1}+\frac{1}{3}\pi \text{, }n_{1}\in \mathrm{Z}\text{, }y=1+\frac{5}{16}\left(CosI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)\right)^{3}\left(\left(-1\right)SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)CosI(\frac{1}{6}arcSin(\frac{2}{3}))\right)^{3}+\left(-\frac{3}{32}\right)\left(CosI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)\right)\left(\left(-1\right)SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)CosI(\frac{1}{6}arcSin(\frac{2}{3}))\right)^{5}+\left(-\frac{3}{32}\right)\left(CosI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)\right)^{5}\left(\left(-1\right)SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)CosI(\frac{1}{6}arcSin(\frac{2}{3}))\right)\text{, }n_{1}\in \mathrm{Z}\text{, }z=1+\frac{5}{16}\left(CosI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)\right)^{3}\left(\left(-1\right)SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)CosI(\frac{1}{6}arcSin(\frac{2}{3}))\right)^{3}+\left(-\frac{3}{32}\right)\left(CosI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)\right)\left(\left(-1\right)SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)CosI(\frac{1}{6}arcSin(\frac{2}{3}))\right)^{5}+\left(-\frac{3}{32}\right)\left(CosI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)\right)^{5}\left(\left(-1\right)SinI(\frac{1}{6}arcSin(\frac{2}{3}))\left(CosI(\frac{1}{3}\pi n_{1})+\left(-1\right)SinI(\frac{1}{3}\pi n_{1})\times 3^{\frac{1}{2}}\right)+\left(SinI(\frac{1}{3}\pi n_{1})+3^{\frac{1}{2}}CosI(\frac{1}{3}\pi n_{1})\right)CosI(\frac{1}{6}arcSin(\frac{2}{3}))\right)\text{, }n_{1}\in \mathrm{Z}
x=\frac{1}{6}\pi +\frac{1}{3}\pi n_{2}+\frac{1}{6}arcSin(\frac{2}{3})\text{, }n_{2}\in \mathrm{Z}\text{, }y=\frac{1}{32}\left(32+10\left(3^{\frac{1}{2}}\left(CosI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+\left(-1\right)SinI(\frac{1}{3}\pi n_{2})SinI(\frac{1}{6}arcSin(\frac{2}{3}))\right)+\left(-1\right)\left(SinI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+SinI(\frac{1}{6}arcSin(\frac{2}{3}))CosI(\frac{1}{3}\pi n_{2})\right)\right)^{3}\left(CosI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+\left(-1\right)SinI(\frac{1}{3}\pi n_{2})SinI(\frac{1}{6}arcSin(\frac{2}{3}))+\left(SinI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+SinI(\frac{1}{6}arcSin(\frac{2}{3}))CosI(\frac{1}{3}\pi n_{2})\right)\times 3^{\frac{1}{2}}\right)^{3}+\left(-3\right)\left(3^{\frac{1}{2}}\left(CosI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+\left(-1\right)SinI(\frac{1}{3}\pi n_{2})SinI(\frac{1}{6}arcSin(\frac{2}{3}))\right)+\left(-1\right)\left(SinI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+SinI(\frac{1}{6}arcSin(\frac{2}{3}))CosI(\frac{1}{3}\pi n_{2})\right)\right)\left(CosI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+\left(-1\right)SinI(\frac{1}{3}\pi n_{2})SinI(\frac{1}{6}arcSin(\frac{2}{3}))+\left(SinI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+SinI(\frac{1}{6}arcSin(\frac{2}{3}))CosI(\frac{1}{3}\pi n_{2})\right)\times 3^{\frac{1}{2}}\right)^{5}+\left(-3\right)\left(3^{\frac{1}{2}}\left(CosI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+\left(-1\right)SinI(\frac{1}{3}\pi n_{2})SinI(\frac{1}{6}arcSin(\frac{2}{3}))\right)+\left(-1\right)\left(SinI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+SinI(\frac{1}{6}arcSin(\frac{2}{3}))CosI(\frac{1}{3}\pi n_{2})\right)\right)^{5}\left(CosI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+\left(-1\right)SinI(\frac{1}{3}\pi n_{2})SinI(\frac{1}{6}arcSin(\frac{2}{3}))+\left(SinI(\frac{1}{3}\pi n_{2})CosI(\frac{1}{6}arcSin(\frac{2}{3}))+SinI(\frac{1}{6}arcSin(\frac{2}{3}))CosI(\frac{1}{3}\pi n_{2})\right)\times 3^{\frac{1}{2}}\right)\right)\text{, }n_{2}\in \mathrm{Z}\text{, }z=1+20\left(CosI(\frac{1}{6}\pi +\frac{1}{3}\pi n_{2}+\frac{1}{6}arcSin(\frac{2}{3}))\right)^{3}\left(SinI(\frac{1}{6}\pi +\frac{1}{3}\pi n_{2}+\frac{1}{6}arcSin(\frac{2}{3}))\right)^{3}+\left(-6\right)CosI(\frac{1}{6}\pi +\frac{1}{3}\pi n_{2}+\frac{1}{6}arcSin(\frac{2}{3}))\left(SinI(\frac{1}{6}\pi +\frac{1}{3}\pi n_{2}+\frac{1}{6}arcSin(\frac{2}{3}))\right)^{5}+\left(-6\right)\left(CosI(\frac{1}{6}\pi +\frac{1}{3}\pi n_{2}+\frac{1}{6}arcSin(\frac{2}{3}))\right)^{5}SinI(\frac{1}{6}\pi +\frac{1}{3}\pi n_{2}+\frac{1}{6}arcSin(\frac{2}{3}))\text{, }n_{2}\in \mathrm{Z}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}