പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4x+2y=8,16x-y=14
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
4x+2y=8
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
4x=-2y+8
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2y കുറയ്ക്കുക.
x=\frac{1}{4}\left(-2y+8\right)
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{2}y+2
\frac{1}{4}, -2y+8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
16\left(-\frac{1}{2}y+2\right)-y=14
16x-y=14 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{y}{2}+2 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-8y+32-y=14
16, -\frac{y}{2}+2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-9y+32=14
-8y, -y എന്നതിൽ ചേർക്കുക.
-9y=-18
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 32 കുറയ്ക്കുക.
y=2
ഇരുവശങ്ങളെയും -9 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{2}\times 2+2
x=-\frac{1}{2}y+2 എന്നതിലെ y എന്നതിനായി 2 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-1+2
-\frac{1}{2}, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=1
2, -1 എന്നതിൽ ചേർക്കുക.
x=1,y=2
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
4x+2y=8,16x-y=14
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}4&2\\16&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\14\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}4&2\\16&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
\left(\begin{matrix}4&2\\16&-1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-2\times 16}&-\frac{2}{4\left(-1\right)-2\times 16}\\-\frac{16}{4\left(-1\right)-2\times 16}&\frac{4}{4\left(-1\right)-2\times 16}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{36}&\frac{1}{18}\\\frac{4}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{36}\times 8+\frac{1}{18}\times 14\\\frac{4}{9}\times 8-\frac{1}{9}\times 14\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=1,y=2
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
4x+2y=8,16x-y=14
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
16\times 4x+16\times 2y=16\times 8,4\times 16x+4\left(-1\right)y=4\times 14
4x, 16x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 16 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 4 കൊണ്ടും ഗുണിക്കുക.
64x+32y=128,64x-4y=56
ലഘൂകരിക്കുക.
64x-64x+32y+4y=128-56
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 64x+32y=128 എന്നതിൽ നിന്ന് 64x-4y=56 കുറയ്ക്കുക.
32y+4y=128-56
64x, -64x എന്നതിൽ ചേർക്കുക. 64x, -64x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
36y=128-56
32y, 4y എന്നതിൽ ചേർക്കുക.
36y=72
128, -56 എന്നതിൽ ചേർക്കുക.
y=2
ഇരുവശങ്ങളെയും 36 കൊണ്ട് ഹരിക്കുക.
16x-2=14
16x-y=14 എന്നതിലെ y എന്നതിനായി 2 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
16x=16
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 2 ചേർക്കുക.
x=1
ഇരുവശങ്ങളെയും 16 കൊണ്ട് ഹരിക്കുക.
x=1,y=2
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.