x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{2}{9}\approx 0.222222222
x=0
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2-18x^{2}-\left(-3x+1\right)^{2}=1
2+6x കൊണ്ട് 1-3x ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2-18x^{2}-\left(9x^{2}-6x+1\right)=1
\left(-3x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
2-18x^{2}-9x^{2}+6x-1=1
9x^{2}-6x+1 എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
2-27x^{2}+6x-1=1
-27x^{2} നേടാൻ -18x^{2}, -9x^{2} എന്നിവ യോജിപ്പിക്കുക.
1-27x^{2}+6x=1
1 നേടാൻ 2 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
1-27x^{2}+6x-1=0
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
-27x^{2}+6x=0
0 നേടാൻ 1 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
x\left(-27x+6\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=\frac{2}{9}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, -27x+6=0 എന്നിവ സോൾവ് ചെയ്യുക.
2-18x^{2}-\left(-3x+1\right)^{2}=1
2+6x കൊണ്ട് 1-3x ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2-18x^{2}-\left(9x^{2}-6x+1\right)=1
\left(-3x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
2-18x^{2}-9x^{2}+6x-1=1
9x^{2}-6x+1 എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
2-27x^{2}+6x-1=1
-27x^{2} നേടാൻ -18x^{2}, -9x^{2} എന്നിവ യോജിപ്പിക്കുക.
1-27x^{2}+6x=1
1 നേടാൻ 2 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
1-27x^{2}+6x-1=0
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
-27x^{2}+6x=0
0 നേടാൻ 1 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
x=\frac{-6±\sqrt{6^{2}}}{2\left(-27\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -27 എന്നതും b എന്നതിനായി 6 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-6±6}{2\left(-27\right)}
6^{2} എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-6±6}{-54}
2, -27 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0}{-54}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-6±6}{-54} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6, 6 എന്നതിൽ ചേർക്കുക.
x=0
-54 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-\frac{12}{-54}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-6±6}{-54} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6 എന്നതിൽ നിന്ന് 6 വ്യവകലനം ചെയ്യുക.
x=\frac{2}{9}
6 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-12}{-54} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=0 x=\frac{2}{9}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
2-18x^{2}-\left(-3x+1\right)^{2}=1
2+6x കൊണ്ട് 1-3x ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2-18x^{2}-\left(9x^{2}-6x+1\right)=1
\left(-3x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
2-18x^{2}-9x^{2}+6x-1=1
9x^{2}-6x+1 എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
2-27x^{2}+6x-1=1
-27x^{2} നേടാൻ -18x^{2}, -9x^{2} എന്നിവ യോജിപ്പിക്കുക.
1-27x^{2}+6x=1
1 നേടാൻ 2 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
-27x^{2}+6x=1-1
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
-27x^{2}+6x=0
0 നേടാൻ 1 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
\frac{-27x^{2}+6x}{-27}=\frac{0}{-27}
ഇരുവശങ്ങളെയും -27 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{6}{-27}x=\frac{0}{-27}
-27 കൊണ്ട് ഹരിക്കുന്നത്, -27 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{2}{9}x=\frac{0}{-27}
3 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{6}{-27} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}-\frac{2}{9}x=0
-27 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{2}{9}x+\left(-\frac{1}{9}\right)^{2}=\left(-\frac{1}{9}\right)^{2}
-\frac{1}{9} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{2}{9}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{1}{9} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{2}{9}x+\frac{1}{81}=\frac{1}{81}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{9} സ്ക്വയർ ചെയ്യുക.
\left(x-\frac{1}{9}\right)^{2}=\frac{1}{81}
x^{2}-\frac{2}{9}x+\frac{1}{81} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{9}\right)^{2}}=\sqrt{\frac{1}{81}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{9}=\frac{1}{9} x-\frac{1}{9}=-\frac{1}{9}
ലഘൂകരിക്കുക.
x=\frac{2}{9} x=0
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{1}{9} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}