\left| \begin{array} { c c c } { 1 } & { 1 } & { k } \\ { - 18 } & { 0 } & { 0 } \\ { 9 } & { 5 } & { - 5 } \end{array} \right|
മൂല്യനിർണ്ണയം ചെയ്യുക
-90k-90
k എന്നതുമായി ബന്ധപ്പെട്ട് സംയോജിപ്പിക്കുക
С-45k^{2}-90k
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
det(\left(\begin{matrix}1&1&k\\-18&0&0\\9&5&-5\end{matrix}\right))
കോണോടുകോണായ രീതി ഉപയോഗിച്ച് മെട്രിക്സിന്റെ ഡിറ്റർമിനന്റ് കണ്ടെത്തുക.
\left(\begin{matrix}1&1&k&1&1\\-18&0&0&-18&0\\9&5&-5&9&5\end{matrix}\right)
ആദ്യ രണ്ട് നിരകൾ മൂന്നാമത്തെയും നാലാമത്തെയും നിരകളായി ആവർത്തിക്കുന്നതിലൂടെ യഥാർത്ഥ മെട്രിക്സ് വികസിപ്പിക്കുക.
k\left(-18\right)\times 5=-90k
മുകളിൽ ഇടതുഭാഗത്തുള്ള എൻട്രിയിൽ ആരംഭിച്ച് താഴേക്ക് കോണോടുകോണായി ഒരുമിച്ച് ഗുണിച്ച് ലഭിക്കുന്ന ഉൽപ്പന്നങ്ങൾ ചേർക്കുക.
-5\left(-18\right)=90
ചുവടെ ഇടതുഭാഗത്തുള്ള എൻട്രിയിൽ ആരംഭിച്ച് മുകളിലേക്ക് കോണോടുകോണായി ഒരുമിച്ച് ഗുണിച്ച് ലഭിക്കുന്ന ഉൽപ്പന്നങ്ങൾ ചേർക്കുക.
-90k-90
താഴേക്കുള്ള കോണോടുകോൺ ഉൽപ്പന്നങ്ങളുടെ ആകെത്തുകയിൽ നിന്നും മുകളിലേക്കുള്ള കോണോടുകോൺ ഉൽപ്പന്നങ്ങളുടെ ആകെത്തുക കുറയ്ക്കുക.
det(\left(\begin{matrix}1&1&k\\-18&0&0\\9&5&-5\end{matrix}\right))
മൈനറുകളുടെ എക്സ്പാൻഷൻ രീതി ഉപയോഗിച്ച് മെട്രിക്സിന്റെ ഡിറ്റർമിനന്റ് കണ്ടെത്തുക (കോഫാക്ടറുകളുടെ എക്സ്പാൻഷൻ എന്നും അറിയപ്പെടുന്നു).
det(\left(\begin{matrix}0&0\\5&-5\end{matrix}\right))-det(\left(\begin{matrix}-18&0\\9&-5\end{matrix}\right))+kdet(\left(\begin{matrix}-18&0\\9&5\end{matrix}\right))
മൈനറുകൾ ഉപയോഗിച്ച് വിപുലീകരിക്കാൻ, ആദ്യ വരിയിലെ ഓരോ ഘടകാശവും അതിന്റെ മൈനർ ഉപയോഗിച്ച് ഗുണിക്കുക, ആ ഘടകാംശത്തിൽ ഉള്ള വരിയും നിരയും ഇല്ലാതാക്കി, തുടർന്ന് ഘടകാംശത്തിന്റെ സ്ഥാന ചിഹ്നം ഉപയോഗിച്ച് ഗുണിക്കുന്ന 2\times 2 മാട്രിക്സിന്റെ ഡിറ്റർമിനന്റ് ആണത്.
-\left(-18\left(-5\right)\right)+k\left(-18\right)\times 5
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, സാരണികം ad-bc ആണ്.
-90+k\left(-90\right)
ലഘൂകരിക്കുക.
-90k-90
അന്തിമഫലം നേടാൻ, പദങ്ങൾ ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}