പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

det(\left(\begin{matrix}0&2&0\\z&3i&i\\-i&0&1+i\end{matrix}\right))
കോണോടുകോണായ രീതി ഉപയോഗിച്ച് മെട്രിക്സിന്‍റെ ഡിറ്റർമിനന്‍റ് കണ്ടെത്തുക.
\left(\begin{matrix}0&2&0&0&2\\z&3i&i&z&3i\\-i&0&1+i&-i&0\end{matrix}\right)
ആദ്യ രണ്ട് നിരകൾ മൂന്നാമത്തെയും നാലാമത്തെയും നിരകളായി ആവർത്തിക്കുന്നതിലൂടെ യഥാർത്ഥ മെട്രിക്സ് വികസിപ്പിക്കുക.
2i\left(-i\right)=2
മുകളിൽ ഇടതുഭാഗത്തുള്ള എൻട്രിയിൽ ആരംഭിച്ച് താഴേക്ക് കോണോടുകോണായി ഒരുമിച്ച് ഗുണിച്ച് ലഭിക്കുന്ന ഉൽപ്പന്നങ്ങൾ ചേർക്കുക.
\left(1+i\right)z\times 2=\left(2+2i\right)z
ചുവടെ ഇടതുഭാഗത്തുള്ള എൻട്രിയിൽ ആരംഭിച്ച് മുകളിലേക്ക് കോണോടുകോണായി ഒരുമിച്ച് ഗുണിച്ച് ലഭിക്കുന്ന ഉൽപ്പന്നങ്ങൾ ചേർക്കുക.
2-\left(2+2i\right)z
താഴേക്കുള്ള കോണോടുകോൺ ഉൽപ്പന്നങ്ങളുടെ ആകെത്തുകയിൽ നിന്നും മുകളിലേക്കുള്ള കോണോടുകോൺ ഉൽപ്പന്നങ്ങളുടെ ആകെത്തുക കുറയ്ക്കുക.
\left(-2-2i\right)z+2
2 എന്നതിൽ നിന്ന് \left(2+2i\right)z വ്യവകലനം ചെയ്യുക.
det(\left(\begin{matrix}0&2&0\\z&3i&i\\-i&0&1+i\end{matrix}\right))
മൈനറുകളുടെ എക്സ്പാൻഷൻ രീതി ഉപയോഗിച്ച് മെട്രിക്സിന്‍റെ ഡിറ്റർമിനന്‍റ് കണ്ടെത്തുക (കോഫാക്ടറുകളുടെ എക്സ്പാൻഷൻ എന്നും അറിയപ്പെടുന്നു).
-2det(\left(\begin{matrix}z&i\\-i&1+i\end{matrix}\right))
മൈനറുകൾ ഉപയോഗിച്ച് വിപുലീകരിക്കാൻ, ആദ്യ വരിയിലെ ഓരോ ഘടകാശവും അതിന്റെ മൈനർ ഉപയോഗിച്ച് ഗുണിക്കുക, ആ ഘടകാംശത്തിൽ ഉള്ള വരിയും നിരയും ഇല്ലാതാക്കി, തുടർന്ന് ഘടകാംശത്തിന്റെ സ്ഥാന ചിഹ്നം ഉപയോഗിച്ച് ഗുണിക്കുന്ന 2\times 2 മാട്രിക്സിന്റെ ഡിറ്റർമിനന്റ് ആണത്.
-2\left(z\left(1+i\right)-\left(-ii\right)\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, സാരണികം ad-bc ആണ്.
-2\left(\left(1+i\right)z-1\right)
ലഘൂകരിക്കുക.
\left(-2-2i\right)z+2
അന്തിമഫലം നേടാൻ, പദങ്ങൾ ചേർക്കുക.