പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x-y=-6,-5x+y=-2
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x-y=-6
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
x=y-6
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും y ചേർക്കുക.
-5\left(y-6\right)+y=-2
-5x+y=-2 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി y-6 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-5y+30+y=-2
-5, y-6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-4y+30=-2
-5y, y എന്നതിൽ ചേർക്കുക.
-4y=-32
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 30 കുറയ്ക്കുക.
y=8
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക.
x=8-6
x=y-6 എന്നതിലെ y എന്നതിനായി 8 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=2
-6, 8 എന്നതിൽ ചേർക്കുക.
x=2,y=8
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x-y=-6,-5x+y=-2
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&-1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-2\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}1&-1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
\left(\begin{matrix}1&-1\\-5&1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-\left(-5\right)\right)}&-\frac{-1}{1-\left(-\left(-5\right)\right)}\\-\frac{-5}{1-\left(-\left(-5\right)\right)}&\frac{1}{1-\left(-\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-2\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&-\frac{1}{4}\\-\frac{5}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-6\\-2\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-6\right)-\frac{1}{4}\left(-2\right)\\-\frac{5}{4}\left(-6\right)-\frac{1}{4}\left(-2\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=2,y=8
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
x-y=-6,-5x+y=-2
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
-5x-5\left(-1\right)y=-5\left(-6\right),-5x+y=-2
x, -5x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -5 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും ഗുണിക്കുക.
-5x+5y=30,-5x+y=-2
ലഘൂകരിക്കുക.
-5x+5x+5y-y=30+2
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -5x+5y=30 എന്നതിൽ നിന്ന് -5x+y=-2 കുറയ്ക്കുക.
5y-y=30+2
-5x, 5x എന്നതിൽ ചേർക്കുക. -5x, 5x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
4y=30+2
5y, -y എന്നതിൽ ചേർക്കുക.
4y=32
30, 2 എന്നതിൽ ചേർക്കുക.
y=8
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
-5x+8=-2
-5x+y=-2 എന്നതിലെ y എന്നതിനായി 8 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-5x=-10
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.
x=2
ഇരുവശങ്ങളെയും -5 കൊണ്ട് ഹരിക്കുക.
x=2,y=8
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.