\left\{ \begin{array}{l}{ x \sqrt { 3 } - 3 y = \sqrt { 3 } }\\{ x + y \sqrt { 3 } = 1 }\end{array} \right.
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
x=1
y=0
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\sqrt{3}x-3y=\sqrt{3},x+\sqrt{3}y=1
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\sqrt{3}x-3y=\sqrt{3}
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
\sqrt{3}x=3y+\sqrt{3}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 3y ചേർക്കുക.
x=\frac{\sqrt{3}}{3}\left(3y+\sqrt{3}\right)
ഇരുവശങ്ങളെയും \sqrt{3} കൊണ്ട് ഹരിക്കുക.
x=\sqrt{3}y+1
\frac{\sqrt{3}}{3}, 3y+\sqrt{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\sqrt{3}y+1+\sqrt{3}y=1
x+\sqrt{3}y=1 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \sqrt{3}y+1 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2\sqrt{3}y+1=1
\sqrt{3}y, \sqrt{3}y എന്നതിൽ ചേർക്കുക.
2\sqrt{3}y=0
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
y=0
ഇരുവശങ്ങളെയും 2\sqrt{3} കൊണ്ട് ഹരിക്കുക.
x=1
x=\sqrt{3}y+1 എന്നതിലെ y എന്നതിനായി 0 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=1,y=0
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
\sqrt{3}x-3y=\sqrt{3},x+\sqrt{3}y=1
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
\sqrt{3}x-3y=\sqrt{3},\sqrt{3}x+\sqrt{3}\sqrt{3}y=\sqrt{3}
\sqrt{3}x, x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും \sqrt{3} കൊണ്ടും ഗുണിക്കുക.
\sqrt{3}x-3y=\sqrt{3},\sqrt{3}x+3y=\sqrt{3}
ലഘൂകരിക്കുക.
\sqrt{3}x+\left(-\sqrt{3}\right)x-3y-3y=\sqrt{3}-\sqrt{3}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് \sqrt{3}x-3y=\sqrt{3} എന്നതിൽ നിന്ന് \sqrt{3}x+3y=\sqrt{3} കുറയ്ക്കുക.
-3y-3y=\sqrt{3}-\sqrt{3}
\sqrt{3}x, -\sqrt{3}x എന്നതിൽ ചേർക്കുക. \sqrt{3}x, -\sqrt{3}x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-6y=\sqrt{3}-\sqrt{3}
-3y, -3y എന്നതിൽ ചേർക്കുക.
-6y=0
\sqrt{3}, -\sqrt{3} എന്നതിൽ ചേർക്കുക.
y=0
ഇരുവശങ്ങളെയും -6 കൊണ്ട് ഹരിക്കുക.
x=1
x+\sqrt{3}y=1 എന്നതിലെ y എന്നതിനായി 0 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=1,y=0
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}