പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4x+3y=10
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 3,4,6 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 12 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3\left(3x+20y\right)-5\left(8y+1\right)=12x+16y
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 5,3,15 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 15 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
9x+60y-5\left(8y+1\right)=12x+16y
3x+20y കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
9x+60y-40y-5=12x+16y
8y+1 കൊണ്ട് -5 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
9x+20y-5=12x+16y
20y നേടാൻ 60y, -40y എന്നിവ യോജിപ്പിക്കുക.
9x+20y-5-12x=16y
ഇരുവശങ്ങളിൽ നിന്നും 12x കുറയ്ക്കുക.
-3x+20y-5=16y
-3x നേടാൻ 9x, -12x എന്നിവ യോജിപ്പിക്കുക.
-3x+20y-5-16y=0
ഇരുവശങ്ങളിൽ നിന്നും 16y കുറയ്ക്കുക.
-3x+4y-5=0
4y നേടാൻ 20y, -16y എന്നിവ യോജിപ്പിക്കുക.
-3x+4y=5
5 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
4x+3y=10,-3x+4y=5
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
4x+3y=10
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
4x=-3y+10
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3y കുറയ്ക്കുക.
x=\frac{1}{4}\left(-3y+10\right)
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x=-\frac{3}{4}y+\frac{5}{2}
\frac{1}{4}, -3y+10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-3\left(-\frac{3}{4}y+\frac{5}{2}\right)+4y=5
-3x+4y=5 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{3y}{4}+\frac{5}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{9}{4}y-\frac{15}{2}+4y=5
-3, -\frac{3y}{4}+\frac{5}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{25}{4}y-\frac{15}{2}=5
\frac{9y}{4}, 4y എന്നതിൽ ചേർക്കുക.
\frac{25}{4}y=\frac{25}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{15}{2} ചേർക്കുക.
y=2
\frac{25}{4} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{3}{4}\times 2+\frac{5}{2}
x=-\frac{3}{4}y+\frac{5}{2} എന്നതിലെ y എന്നതിനായി 2 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{-3+5}{2}
-\frac{3}{4}, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=1
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{5}{2} എന്നത് -\frac{3}{2} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=1,y=2
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
4x+3y=10
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 3,4,6 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 12 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3\left(3x+20y\right)-5\left(8y+1\right)=12x+16y
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 5,3,15 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 15 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
9x+60y-5\left(8y+1\right)=12x+16y
3x+20y കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
9x+60y-40y-5=12x+16y
8y+1 കൊണ്ട് -5 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
9x+20y-5=12x+16y
20y നേടാൻ 60y, -40y എന്നിവ യോജിപ്പിക്കുക.
9x+20y-5-12x=16y
ഇരുവശങ്ങളിൽ നിന്നും 12x കുറയ്ക്കുക.
-3x+20y-5=16y
-3x നേടാൻ 9x, -12x എന്നിവ യോജിപ്പിക്കുക.
-3x+20y-5-16y=0
ഇരുവശങ്ങളിൽ നിന്നും 16y കുറയ്ക്കുക.
-3x+4y-5=0
4y നേടാൻ 20y, -16y എന്നിവ യോജിപ്പിക്കുക.
-3x+4y=5
5 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
4x+3y=10,-3x+4y=5
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}4&3\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}4&3\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
\left(\begin{matrix}4&3\\-3&4\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-3\left(-3\right)}&-\frac{3}{4\times 4-3\left(-3\right)}\\-\frac{-3}{4\times 4-3\left(-3\right)}&\frac{4}{4\times 4-3\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&-\frac{3}{25}\\\frac{3}{25}&\frac{4}{25}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 10-\frac{3}{25}\times 5\\\frac{3}{25}\times 10+\frac{4}{25}\times 5\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=1,y=2
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
4x+3y=10
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 3,4,6 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 12 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3\left(3x+20y\right)-5\left(8y+1\right)=12x+16y
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 5,3,15 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 15 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
9x+60y-5\left(8y+1\right)=12x+16y
3x+20y കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
9x+60y-40y-5=12x+16y
8y+1 കൊണ്ട് -5 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
9x+20y-5=12x+16y
20y നേടാൻ 60y, -40y എന്നിവ യോജിപ്പിക്കുക.
9x+20y-5-12x=16y
ഇരുവശങ്ങളിൽ നിന്നും 12x കുറയ്ക്കുക.
-3x+20y-5=16y
-3x നേടാൻ 9x, -12x എന്നിവ യോജിപ്പിക്കുക.
-3x+20y-5-16y=0
ഇരുവശങ്ങളിൽ നിന്നും 16y കുറയ്ക്കുക.
-3x+4y-5=0
4y നേടാൻ 20y, -16y എന്നിവ യോജിപ്പിക്കുക.
-3x+4y=5
5 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
4x+3y=10,-3x+4y=5
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
-3\times 4x-3\times 3y=-3\times 10,4\left(-3\right)x+4\times 4y=4\times 5
4x, -3x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -3 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 4 കൊണ്ടും ഗുണിക്കുക.
-12x-9y=-30,-12x+16y=20
ലഘൂകരിക്കുക.
-12x+12x-9y-16y=-30-20
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -12x-9y=-30 എന്നതിൽ നിന്ന് -12x+16y=20 കുറയ്ക്കുക.
-9y-16y=-30-20
-12x, 12x എന്നതിൽ ചേർക്കുക. -12x, 12x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-25y=-30-20
-9y, -16y എന്നതിൽ ചേർക്കുക.
-25y=-50
-30, -20 എന്നതിൽ ചേർക്കുക.
y=2
ഇരുവശങ്ങളെയും -25 കൊണ്ട് ഹരിക്കുക.
-3x+4\times 2=5
-3x+4y=5 എന്നതിലെ y എന്നതിനായി 2 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-3x+8=5
4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-3x=-3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.
x=1
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
x=1,y=2
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.