പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x-y=10,2x+2.5y=200
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x-y=10
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
x=y+10
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും y ചേർക്കുക.
2\left(y+10\right)+2.5y=200
2x+2.5y=200 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി y+10 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2y+20+2.5y=200
2, y+10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4.5y+20=200
2y, \frac{5y}{2} എന്നതിൽ ചേർക്കുക.
4.5y=180
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 20 കുറയ്ക്കുക.
y=40
4.5 കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=40+10
x=y+10 എന്നതിലെ y എന്നതിനായി 40 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=50
10, 40 എന്നതിൽ ചേർക്കുക.
x=50,y=40
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x-y=10,2x+2.5y=200
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&-1\\2&2.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\200\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&-1\\2&2.5\end{matrix}\right))\left(\begin{matrix}1&-1\\2&2.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2.5\end{matrix}\right))\left(\begin{matrix}10\\200\end{matrix}\right)
\left(\begin{matrix}1&-1\\2&2.5\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2.5\end{matrix}\right))\left(\begin{matrix}10\\200\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2.5\end{matrix}\right))\left(\begin{matrix}10\\200\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2.5}{2.5-\left(-2\right)}&-\frac{-1}{2.5-\left(-2\right)}\\-\frac{2}{2.5-\left(-2\right)}&\frac{1}{2.5-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\200\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}&\frac{2}{9}\\-\frac{4}{9}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}10\\200\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}\times 10+\frac{2}{9}\times 200\\-\frac{4}{9}\times 10+\frac{2}{9}\times 200\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\40\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=50,y=40
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
x-y=10,2x+2.5y=200
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
2x+2\left(-1\right)y=2\times 10,2x+2.5y=200
x, 2x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും ഗുണിക്കുക.
2x-2y=20,2x+2.5y=200
ലഘൂകരിക്കുക.
2x-2x-2y-2.5y=20-200
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 2x-2y=20 എന്നതിൽ നിന്ന് 2x+2.5y=200 കുറയ്ക്കുക.
-2y-2.5y=20-200
2x, -2x എന്നതിൽ ചേർക്കുക. 2x, -2x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-4.5y=20-200
-2y, -\frac{5y}{2} എന്നതിൽ ചേർക്കുക.
-4.5y=-180
20, -200 എന്നതിൽ ചേർക്കുക.
y=40
-4.5 കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
2x+2.5\times 40=200
2x+2.5y=200 എന്നതിലെ y എന്നതിനായി 40 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
2x+100=200
2.5, 40 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2x=100
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 100 കുറയ്ക്കുക.
x=50
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=50,y=40
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.