പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x-2\left(3y-1\right)=-4,-\left(-x-7\right)+\frac{2}{3}y=1
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x-2\left(3y-1\right)=-4
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
x-6y+2=-4
-2, 3y-1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x-6y=-6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
x=6y-6
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 6y ചേർക്കുക.
-\left(-\left(6y-6\right)-7\right)+\frac{2}{3}y=1
-\left(-x-7\right)+\frac{2}{3}y=1 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -6+6y സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\left(-6y+6-7\right)+\frac{2}{3}y=1
-1, -6+6y എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\left(-6y-1\right)+\frac{2}{3}y=1
6, -7 എന്നതിൽ ചേർക്കുക.
6y+1+\frac{2}{3}y=1
-1, -6y-1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{20}{3}y+1=1
6y, \frac{2y}{3} എന്നതിൽ ചേർക്കുക.
\frac{20}{3}y=0
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
y=0
\frac{20}{3} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-6
x=6y-6 എന്നതിലെ y എന്നതിനായി 0 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-6,y=0
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x-2\left(3y-1\right)=-4,-\left(-x-7\right)+\frac{2}{3}y=1
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
x-2\left(3y-1\right)=-4
ആദ്യ സമവാക്യം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് ലഘൂകരിക്കുക.
x-6y+2=-4
-2, 3y-1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x-6y=-6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
-\left(-x-7\right)+\frac{2}{3}y=1
രണ്ടാമത്തെ സമവാക്യം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് ലഘൂകരിക്കുക.
x+7+\frac{2}{3}y=1
-1, -x-7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x+\frac{2}{3}y=-6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 7 കുറയ്ക്കുക.
\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-6\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{2}{3}}{\frac{2}{3}-\left(-6\right)}&-\frac{-6}{\frac{2}{3}-\left(-6\right)}\\-\frac{1}{\frac{2}{3}-\left(-6\right)}&\frac{1}{\frac{2}{3}-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-6\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{9}{10}\\-\frac{3}{20}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}-6\\-6\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-6\right)+\frac{9}{10}\left(-6\right)\\-\frac{3}{20}\left(-6\right)+\frac{3}{20}\left(-6\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\0\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-6,y=0
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.