പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x=7y
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, y എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും y കൊണ്ട് ഗുണിക്കുക.
x-7y=0
ഇരുവശങ്ങളിൽ നിന്നും 7y കുറയ്ക്കുക.
x+y=140,x-7y=0
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x+y=140
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
x=-y+140
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
-y+140-7y=0
x-7y=0 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -y+140 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-8y+140=0
-y, -7y എന്നതിൽ ചേർക്കുക.
-8y=-140
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 140 കുറയ്ക്കുക.
y=\frac{35}{2}
ഇരുവശങ്ങളെയും -8 കൊണ്ട് ഹരിക്കുക.
x=-\frac{35}{2}+140
x=-y+140 എന്നതിലെ y എന്നതിനായി \frac{35}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{245}{2}
140, -\frac{35}{2} എന്നതിൽ ചേർക്കുക.
x=\frac{245}{2},y=\frac{35}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x=7y
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, y എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും y കൊണ്ട് ഗുണിക്കുക.
x-7y=0
ഇരുവശങ്ങളിൽ നിന്നും 7y കുറയ്ക്കുക.
x+y=140,x-7y=0
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&1\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}140\\0\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}1&1\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}140\\0\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-7\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}140\\0\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-7\end{matrix}\right))\left(\begin{matrix}140\\0\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-1}&-\frac{1}{-7-1}\\-\frac{1}{-7-1}&\frac{1}{-7-1}\end{matrix}\right)\left(\begin{matrix}140\\0\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{8}&\frac{1}{8}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}140\\0\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{8}\times 140\\\frac{1}{8}\times 140\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{245}{2}\\\frac{35}{2}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{245}{2},y=\frac{35}{2}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
x=7y
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, y എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും y കൊണ്ട് ഗുണിക്കുക.
x-7y=0
ഇരുവശങ്ങളിൽ നിന്നും 7y കുറയ്ക്കുക.
x+y=140,x-7y=0
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
x-x+y+7y=140
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് x+y=140 എന്നതിൽ നിന്ന് x-7y=0 കുറയ്ക്കുക.
y+7y=140
x, -x എന്നതിൽ ചേർക്കുക. x, -x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
8y=140
y, 7y എന്നതിൽ ചേർക്കുക.
y=\frac{35}{2}
ഇരുവശങ്ങളെയും 8 കൊണ്ട് ഹരിക്കുക.
x-7\times \frac{35}{2}=0
x-7y=0 എന്നതിലെ y എന്നതിനായി \frac{35}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x-\frac{245}{2}=0
-7, \frac{35}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{245}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{245}{2} ചേർക്കുക.
x=\frac{245}{2},y=\frac{35}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.