\left\{ \begin{array} { l } { 78 x + 40 y = 1280 } \\ { 120 x + 80 y = 2800 } \end{array} \right.
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
x = -\frac{20}{3} = -6\frac{2}{3} \approx -6.666666667
y=45
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
78x+40y=1280,120x+80y=2800
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
78x+40y=1280
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
78x=-40y+1280
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 40y കുറയ്ക്കുക.
x=\frac{1}{78}\left(-40y+1280\right)
ഇരുവശങ്ങളെയും 78 കൊണ്ട് ഹരിക്കുക.
x=-\frac{20}{39}y+\frac{640}{39}
\frac{1}{78}, -40y+1280 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
120\left(-\frac{20}{39}y+\frac{640}{39}\right)+80y=2800
120x+80y=2800 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{-20y+640}{39} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{800}{13}y+\frac{25600}{13}+80y=2800
120, \frac{-20y+640}{39} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{240}{13}y+\frac{25600}{13}=2800
-\frac{800y}{13}, 80y എന്നതിൽ ചേർക്കുക.
\frac{240}{13}y=\frac{10800}{13}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{25600}{13} കുറയ്ക്കുക.
y=45
\frac{240}{13} കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{20}{39}\times 45+\frac{640}{39}
x=-\frac{20}{39}y+\frac{640}{39} എന്നതിലെ y എന്നതിനായി 45 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-\frac{300}{13}+\frac{640}{39}
-\frac{20}{39}, 45 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{20}{3}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{640}{39} എന്നത് -\frac{300}{13} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-\frac{20}{3},y=45
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
78x+40y=1280,120x+80y=2800
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}78&40\\120&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1280\\2800\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}78&40\\120&80\end{matrix}\right))\left(\begin{matrix}78&40\\120&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}78&40\\120&80\end{matrix}\right))\left(\begin{matrix}1280\\2800\end{matrix}\right)
\left(\begin{matrix}78&40\\120&80\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}78&40\\120&80\end{matrix}\right))\left(\begin{matrix}1280\\2800\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}78&40\\120&80\end{matrix}\right))\left(\begin{matrix}1280\\2800\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{80}{78\times 80-40\times 120}&-\frac{40}{78\times 80-40\times 120}\\-\frac{120}{78\times 80-40\times 120}&\frac{78}{78\times 80-40\times 120}\end{matrix}\right)\left(\begin{matrix}1280\\2800\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{18}&-\frac{1}{36}\\-\frac{1}{12}&\frac{13}{240}\end{matrix}\right)\left(\begin{matrix}1280\\2800\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{18}\times 1280-\frac{1}{36}\times 2800\\-\frac{1}{12}\times 1280+\frac{13}{240}\times 2800\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{3}\\45\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-\frac{20}{3},y=45
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
78x+40y=1280,120x+80y=2800
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
120\times 78x+120\times 40y=120\times 1280,78\times 120x+78\times 80y=78\times 2800
78x, 120x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 120 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 78 കൊണ്ടും ഗുണിക്കുക.
9360x+4800y=153600,9360x+6240y=218400
ലഘൂകരിക്കുക.
9360x-9360x+4800y-6240y=153600-218400
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 9360x+4800y=153600 എന്നതിൽ നിന്ന് 9360x+6240y=218400 കുറയ്ക്കുക.
4800y-6240y=153600-218400
9360x, -9360x എന്നതിൽ ചേർക്കുക. 9360x, -9360x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-1440y=153600-218400
4800y, -6240y എന്നതിൽ ചേർക്കുക.
-1440y=-64800
153600, -218400 എന്നതിൽ ചേർക്കുക.
y=45
ഇരുവശങ്ങളെയും -1440 കൊണ്ട് ഹരിക്കുക.
120x+80\times 45=2800
120x+80y=2800 എന്നതിലെ y എന്നതിനായി 45 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
120x+3600=2800
80, 45 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
120x=-800
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 3600 കുറയ്ക്കുക.
x=-\frac{20}{3}
ഇരുവശങ്ങളെയും 120 കൊണ്ട് ഹരിക്കുക.
x=-\frac{20}{3},y=45
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}